92,421 research outputs found

    Effect of Defects on the Line shape of Electron Paramagnetic Resonance Signals from the Single-Molecule Magnet Mn12: A Theoretical Study

    Full text link
    We herein estimate the effect of lattice defects on the line shape of electron paramagnetic resonance (EPR) signals from a single crystal of the S=10 single-molecule magnet Mn12_{12} with the external magnetic field along the crystal c axis. A second-order perturbation treatment of an effective single-spin Hamiltonian indicates that a small, random, static misorientation of the magnetic symmetry axes in a crystalline lattice can lead to asymmetric EPR peaks. Full spectra are simulated by calculating probability-distribution functions for the resonant fields, employing distributions in the tilt angle of the easy axis from the c axis, in the uniaxial anisotropy parameter, and in the gg-factor. We discuss conditions under which the asymmetry in the EPR spectra becomes prominent. The direction and magnitude of the asymmetry provide information on the specific energy levels involved with the EPR transition, the EPR frequency, and the distribution in the tilt angle.Comment: published versio

    Local spectroscopy of a proximity superconductor at very low temperature

    Full text link
    We performed the local spectroscopy of a Normal-metal--Superconductor (N-S) junction with the help of a very low temperature (60 mK) Scanning Tunneling Microscope (STM). The spatial dependence of the local density of states was probed locally in the vicinity of the N-S interface. We observed spectra with a fully-developed gap in the regions where a thin normal metal layer caps the superconductor dot. Close to the S metal edge, a clear pseudo-gap shows up, which is characteristic of the superconducting proximity effect in the case of a long normal metal. The experimental results are compared to the predictions of the quasiclassical theory.Comment: 7 pages, 3 figure

    Evaluation of superalloy heavy-duty grinding based on multivariate tests

    Get PDF
    The quality and economy of grinding depend on proper selection of grinding conditions for the materials to be ground. In order to evaluate the effect of heavy-duty grinding, a new performance index, which includes specific material removal rate, size accuracy, and grinding forces, was proposed. Robust design of experiment, including orthogonal arrays, the signal-to-noise ratio (SNR) method, and analysis of variance (ANOVA) for multivariate data, was employed to estimate the effect of uniform experimental design and to optimize grinding parameters. Empirical models of grinding force were investigated for finite element analysis of new fixture design. These empirical models, based on robust design of experiments and multiple regression methodology, have been confirmed through further verification experiments. Correlation coefficients from 0.87 to 0.96 were achieved

    Application of information theory to the design of line-scan imaging systems

    Get PDF
    Information theory is used to formulate a single figure of merit for assessing the performance of line scan imaging systems as a function of their spatial response (point spread function or modulation transfer function), sensitivity, sampling and quantization intervals, and the statistical properties of a random radiance field. Computational results for the information density and efficiency (i.e., the ratio of information density to data density) are intuitively satisfying and compare well with experimental and theoretical results obtained by earlier investigators concerned with the performance of TV systems

    Regularization, Renormalization and Range: The Nucleon-Nucleon Interaction from Effective Field Theory

    Get PDF
    Regularization and renormalization is discussed in the context of low-energy effective field theory treatments of two or more heavy particles (such as nucleons). It is desirable to regulate the contact interactions from the outset by treating them as having a finite range. The low energy physical observables should be insensitive to this range provided that the range is of a similar or greater scale than that of the interaction. Alternative schemes, such as dimensional regularization, lead to paradoxical conclusions such as the impossibility of repulsive interactions for truly low energy effective theories where all of the exchange particles are integrated out. This difficulty arises because a nonrelativistic field theory with repulsive contact interactions is trivial in the sense that the SS matrix is unity and the renormalized coupling constant zero. Possible consequences of low energy attraction are also discussed. It is argued that in the case of large or small scattering lengths, the region of validity of effective field theory expansion is much larger if the contact interactions are given a finite range from the beginning.Comment: 7 page

    Electron Paramagnetic Resonance Linewidths and Lineshapes for the Molecular Magnets Fe8 and Mn12

    Full text link
    We study theoretically Electron Paramagentic Resonance (EPR) linewidths for single crystals of the molecular magnets Fe8_8 and Mn12_{12} as functions of energy eigenstates MsM_s, frequency, and temperature when a magnetic field along the easy axis is swept at fixed excitation frequency. This work was motivated by recent EPR experiments. To calculate the linewidths, we use density-matrix equations, including dipolar interactions and distributions of the uniaxial anisotropy parameter DD and the Land\'{e} gg factor. Our calculated linewidths agree well with the experimental data. We also examine the lineshapes of the EPR spectra due to local rotations of the magnetic anisotropy axes caused by defects in samples. Our preliminary results predict that this effect leads to asymmetry in the EPR spectra.Comment: 2001 MMM conferenc
    • …
    corecore