93,517 research outputs found

    The quantization of the chiral Schwinger model based on the BFT-BFV formalism II

    Get PDF
    We apply an improved version of Batalin-Fradkin-Tyutin (BFT) Hamiltonian method to the a=1 chiral Schwinger Model, which is much more nontrivial than the a>1.one.Furthermore,throughthepathintegralquantization,wenewlyresolvetheproblemofthenon−trivial one. Furthermore, through the path integral quantization, we newly resolve the problem of the non-trivial \deltafunctionaswellasthatoftheunwantedFourierparameter function as well as that of the unwanted Fourier parameter \xi$ in the measure. As a result, we explicitly obtain the fully gauge invariant partition function, which includes a new type of Wess-Zumino (WZ) term irrelevant to the gauge symmetry as well as usual WZ action.Comment: 17 pages, To be published in J. Phys.

    Phase Diagrams of Quasispecies Theory with Recombination and Horizontal Gene Transfer

    Full text link
    We consider how transfer of genetic information between individuals influences the phase diagram and mean fitness of both the Eigen and the parallel, or Crow-Kimura, models of evolution. In the absence of genetic transfer, these physical models of evolution consider the replication and point mutation of the genomes of independent individuals in a large population. A phase transition occurs, such that below a critical mutation rate an identifiable quasispecies forms. We generalize these models of quasispecies evolution to include horizontal gene transfer. We show how transfer of genetic information changes the phase diagram and mean fitness and introduces metastability in quasispecies theory, via an analytic field theoretic mapping.Comment: 5 pages, 1 figure, to appear in Physics Review Letter

    Generalized BFT Formalism of Electroweak Theory in the Unitary Gauge

    Full text link
    We systematically embed the SU(2)×\timesU(1) Higgs model in the unitary gauge into a fully gauge-invariant theory by following the generalized BFT formalism. We also suggest a novel path to get a first-class Lagrangian directly from the original second-class one using the BFT fields.Comment: 14 pages, Latex, no figure

    Magnetic Properties of a Two-Dimensional Mixed-Spin System

    Full text link
    Using a Langmuir-Blodgett (LB) synthesis method, novel two-dimensional (2D) mixed-spin magnetic systems, in which each magnetic layer is both structurally and magnetically isolated, have been generated. Specifically, a 2D Fe-Ni cyanide-bridged network with a face-centered square grid structure has been magnetically and structurally characterized. The results indicate the presence of ferromagnetic exchange interactions between the Fe3+^{3+} (S=1/2S=1/2) and Ni2+^{2+} (S=1) centers.Comment: 2 pages, 3 figs., submitted 23rd International Conference on Low Temperature Physics (LT-23), Aug. 200

    Structural Anomalies at the Magnetic and Ferroelectric Transitions in RMn2O5RMn_2O_5 (R=Tb, Dy, Ho)

    Full text link
    Strong anomalies of the thermal expansion coefficients at the magnetic and ferroelectric transitions have been detected in multiferroic RMn2O5RMn_2O_5. Their correlation with anomalies of the specific heat and the dielectric constant is discussed. The results provide evidence for the magnetic origin of the ferroelectricity mediated by strong spin-lattice coupling in the compounds. Neutron scattering data for HoMn2O5HoMn_2O_5 indicate a spin reorientation at the two low-temperature phase transitions

    A Note on Tachyons in the D3+D3ˉD3+{\bar {D3}} System

    Full text link
    The periodic bounce of Born-Infeld theory of D3D3-branes is derived, and the BPS limit of infinite period is discussed as an example of tachyon condensation. The explicit bounce solution to the Born--Infeld action is interpreted as an unstable fundamental string stretched between the brane and its antibrane.Comment: 10 pages, 2 figures. v2: minor changes, acknowledgement added; v3: explanations and references added. Final version to appear in Mod. Phys. Lett.

    Ablation of carbonaceous materials in a hydrogen-helium arc-jet flow

    Get PDF
    The stagnation-point ablation rates of a graphite, a carbon-carbon composite, and four carbon-phenolic materials are measured in an arc-jet wind tunnel with a 50% hydrogen-50% helium mixture as the test gas. Flow environments are determined through measurements of static and impact pressures, heat-transfer rates to a calorimeter, and radiation spectra, and through numerical calculation of the flow through the wind tunnel, spectra, and heat-transfer rates. The environments so determined are: impact pressure approx. 3 atm, Mach number approx. 2.1, convective heat-transfer rate approx. 14 kw/sq cm, and radiative heat-transfer rate approx. 7 kw/sq cm in the absence of ablation. Ablation rates are determined from the measured rates of mass loss and recession of the ablation specimens. Compared with the predicted ablation rates obtained by running RASLE and CMA codes, the measured rates are higher by about 15% for all tested materials

    Design and construction of a point-contact spectroscopy rig with lateral scanning capability

    Full text link
    The design and realization of a cryogenic rig for point-contact spectroscopy measurements in the needle-anvil configuration is presented. Thanks to the use of two piezoelectric nano-positioners, the tip can move along the vertical (zz) and horizontal (xx) direction and thus the rig is suitable to probe different regions of a sample \textit{in situ}. Moreover, it can also form double point-contacts on different facets of a single crystal for achieving, e.g., an interferometer configuration for phase-sensitive measurements. For the latter purpose, the sample holder can also host a Helmholtz coil for applying a small transverse magnetic field to the junction. A semi-rigid coaxial cable can be easily added for studying the behavior of Josephson junctions under microwave irradiation. The rig can be detached from the probe and thus used with different cryostats. The performance of this new probe has been tested in a Quantum Design PPMS system by conducting point-contact Andreev reflection measurements on Nb thin films over large areas as a function of temperature and magnetic field.Comment: 7 pages, 7 figures, published in Rev. Sci. Instru

    Rotating Black Holes at Future Colliders. III. Determination of Black Hole Evolution

    Full text link
    TeV scale gravity scenario predicts that the black hole production dominates over all other interactions above the scale and that the Large Hadron Collider will be a black hole factory. Such higher dimensional black holes mainly decay into the standard model fields via the Hawking radiation whose spectrum can be computed from the greybody factor. Here we complete the series of our work by showing the greybody factors and the resultant spectra for the brane localized spinor and vector field emissions for arbitrary frequencies. Combining these results with the previous works, we determine the complete radiation spectra and the subsequent time evolution of the black hole. We find that, for a typical event, well more than half a black hole mass is emitted when the hole is still highly rotating, confirming our previous claim that it is important to take into account the angular momentum of black holes.Comment: typoes in eqs(82)-(84) corrected; version to appear in Phys. Rev. D; references and a footnote added; same manuscript with high resolution embedded figures available on http://www.gakushuin.ac.jp/univ/sci/phys/ida/paper
    • …
    corecore