4,599 research outputs found

    Anisotropic Dirac fermions in a Bi square net of SrMnBi2

    Get PDF
    We report the highly anisotropic Dirac fermions in a Bi square net of SrMnBi2, based on a first principle calculation, angle resolved photoemission spectroscopy, and quantum oscillations for high-quality single crystals. We found that the Dirac dispersion is generally induced in the (SrBi)+ layer containing a double-sized Bi square net. In contrast to the commonly observed isotropic Dirac cone, the Dirac cone in SrMnBi2 is highly anisotropic with a large momentum-dependent disparity of Fermi velocities of ~ 8. These findings demonstrate that a Bi square net, a common building block of various layered pnictides, provide a new platform that hosts highly anisotropic Dirac fermions.Comment: 5 pages, 4 figure

    Unveiling the ac Dynamics of Ferroelectric Domains by Investigating the Frequency Dependence of Hysteresis Loops

    Full text link
    We investigated nonequilibrium domain wall dynamics under an ac field by measuring the hysteresis loops of epitaxial ferroelectric capacitors at various frequencies and temperatures. Polarization switching is induced mostly by thermally activated creep motion at lower frequencies, and by viscous flow motion at higher frequencies. The dynamic crossover between the creep and flow regimes unveils two frequency-dependent scaling regions of hysteresis loops. Based on these findings, we constructed a dynamic phase diagram for hysteretic ferroelectric domain dynamics in the presence of ac fields.Comment: 3 figure

    Gaussian Quantum Illumination via Monotone Metrics

    Full text link
    Quantum illumination is to discern the presence or absence of a low reflectivity target, where the error probability decays exponentially in the number of copies used. When the target reflectivity is small so that it is hard to distinguish target presence or absence, the exponential decay constant falls into a class of objects called monotone metrics. We evaluate monotone metrics restricted to Gaussian states in terms of first-order moments and covariance matrix. Under the assumption of a low reflectivity target, we explicitly derive analytic formulae for decay constant of an arbitrary Gaussian input state. Especially, in the limit of large background noise and low reflectivity, there is no need of symplectic diagonalization which usually complicates the computation of decay constants. First, we show that two-mode squeezed vacuum (TMSV) states are the optimal probe among pure Gaussian states with fixed signal mean photon number. Second, as an alternative to preparing TMSV states with high mean photon number, we show that preparing a TMSV state with low mean photon number and displacing the signal mode is a more experimentally feasible setup without degrading the performance that much. Third, we show that it is of utmost importance to prepare an efficient idler memory to beat coherent states and provide analytic bounds on the idler memory transmittivity in terms of signal power, background noise, and idler memory noise. Finally, we identify the region of physically possible correlations between the signal and idler modes that can beat coherent states.Comment: 16 pages, 6 figure

    Multiferroic properties of epitaxially stabilized hexagonal DyMnO3 thin films

    Full text link
    We fabricated epitaxial thin films of hexagonal DyMnO3, which otherwise form in a bulk perovskite structure, via deposition on Pt(111)//Al2O3 (0001) and YSZ(111) substrates: each of which has in-plane hexagonal symmetry. The polarization hysteresis loop demonstrated the existence of ferroelectricity in our hexagonal DyMnO3 films at least below 70 K. The observed 2.2 uC/cm^2 remnant polarization at 25 K corresponded to a polarization enhancement by a factor of 10 compared to that of the bulk orthorhombic DyMnO3. Interestingly, this system showed an antiferroelectric-like feature in its hysteresis loop. Our hexagonal DyMnO3 films showed an antiferromagnetic Neel temperature around 60 K and a spin reorientation transition around 40 K. We also found a clear hysteresis in the temperature dependence of the magnetization, which was measured after zero-field-cooling and field-cooling. This hysteresis may well have been of spin glass origin, which was likely to arise from the geometric frustration of antiferromagnetically-coupled Mn spins with an edge-sharing triangular lattice

    Lowering the energy threshold in COSINE-100 dark matter searches

    Full text link
    COSINE-100 is a dark matter detection experiment that uses NaI(Tl) crystal detectors operating at the Yangyang underground laboratory in Korea since September 2016. Its main goal is to test the annual modulation observed by the DAMA/LIBRA experiment with the same target medium. Recently DAMA/LIBRA has released data with an energy threshold lowered to 1 keV, and the persistent annual modulation behavior is still observed at 9.5σ\sigma. By lowering the energy threshold for electron recoils to 1 keV, COSINE-100 annual modulation results can be compared to those of DAMA/LIBRA in a model-independent way. Additionally, the event selection methods provide an access to a few to sub-GeV dark matter particles using constant rate studies. In this article, we discuss the COSINE-100 event selection algorithm, its validation, and efficiencies near the threshold
    corecore