63,318 research outputs found

    Crossover from the pair contact process with diffusion to directed percolation

    Full text link
    Crossover behaviors from the pair contact process with diffusion (PCPD) and the driven PCPD (DPCPD) to the directed percolation (DP) are studied in one dimension by introducing a single particle annihilation/branching dynamics. The crossover exponents ϕ\phi are estimated numerically as 1/ϕ≃0.58±0.031/\phi \simeq 0.58\pm0.03 for the PCPD and 1/ϕ≃0.49±0.021/\phi \simeq 0.49 \pm 0.02 for the DPCPD. Nontriviality of the PCPD crossover exponent strongly supports non-DP nature of the PCPD critical scaling, which is further evidenced by the anomalous critical amplitude scaling near the PCPD point. In addition, we find that the DPCPD crossover is consistent with the mean field prediction of the tricritical DP class as expected

    Crossover from the parity-conserving pair contact process with diffusion to other universality classes

    Full text link
    The pair contact process with diffusion (PCPD) with modulo 2 conservation (\pcpdt) [2A→4A2A\to 4A, 2A→02A\to 0] is studied in one dimension, focused on the crossover to other well established universality classes: the directed Ising (DI) and the directed percolation (DP). First, we show that the \pcpdt shares the critical behaviors with the PCPD, both with and without directional bias. Second, the crossover from the \pcpdt to the DI is studied by including a parity-conserving single-particle process (A→3AA \to 3A). We find the crossover exponent 1/ϕ1=0.57(3)1/\phi_1 = 0.57(3), which is argued to be identical to that of the PCPD-to-DP crossover by adding A→2AA \to 2A. This suggests that the PCPD universality class has a well defined fixed point distinct from the DP. Third, we study the crossover from a hybrid-type reaction-diffusion process belonging to the DP [3A→5A3A\to 5A, 2A→02A\to 0] to the DI by adding A→3AA \to 3A. We find 1/ϕ2=0.73(4)1/\phi_2 = 0.73(4) for the DP-to-DI crossover. The inequality of ϕ1\phi_1 and ϕ2\phi_2 further supports the non-DP nature of the PCPD scaling. Finally, we introduce a symmetry-breaking field in the dual spin language to study the crossover from the \pcpdt to the DP. We find 1/ϕ3=1.23(10)1/\phi_3 = 1.23(10), which is associated with a new independent route from the PCPD to the DP.Comment: 8 pages, 8 figure

    Nontrivial critical crossover between directed percolation models: Effect of infinitely many absorbing states

    Full text link
    At non-equilibrium phase transitions into absorbing (trapped) states, it is well known that the directed percolation (DP) critical scaling is shared by two classes of models with a single (S) absorbing state and with infinitely many (IM) absorbing states. We study the crossover behavior in one dimension, arising from a considerable reduction of the number of absorbing states (typically from the IM-type to the S-type DP models), by following two different (excitatory or inhibitory) routes which make the auxiliary field density abruptly jump at the crossover. Along the excitatory route, the system becomes overly activated even for an infinitesimal perturbation and its crossover becomes discontinuous. Along the inhibitory route, we find continuous crossover with the universal crossover exponent ϕ≃1.78(6)\phi\simeq 1.78(6), which is argued to be equal to Μ∄\nu_\|, the relaxation time exponent of the DP universality class on a general footing. This conjecture is also confirmed in the case of the directed Ising (parity-conserving) class. Finally, we discuss the effect of diffusion to the IM-type models and suggest an argument why diffusive models with some hybrid-type reactions should belong to the DP class.Comment: 8 pages, 9 figure

    Crossover in the Slow Decay of Dynamic Correlations in the Lorentz Model

    Full text link
    The long-time behavior of transport coefficients in a model for spatially heterogeneous media in two and three dimensions is investigated by Molecular Dynamics simulations. The behavior of the velocity auto-correlation function is rationalized in terms of a competition of the critical relaxation due to the underlying percolation transition and the hydrodynamic power-law anomalies. In two dimensions and in the absence of a diffusive mode, another power law anomaly due to trapping is found with an exponent -3 instead of -2. Further, the logarithmic divergence of the Burnett coefficient is corroborated in the dilute limit; at finite density, however, it is dominated by stronger divergences.Comment: Full-length paragraph added that exemplifies the relevance for dense fluids and makes a connection to recently observed, novel long-time tails in a hard-sphere flui

    Density Expansion for the Mobility in a Quantum Lorentz Model

    Full text link
    We consider the mobility of electrons in an environment of static hard-sphere scatterers, which provides a realistic description of electrons in Helium gas. A systematic expansion in the scatterer density is carried to second order relative to the Boltzmann result, and the analytic contribution at this order is derived, together with the known logarithmic term in the density expansion. It is shown that existing experimental data are consistent with the existence of the logarithmic term in the density expansion, but more precise experiments are needed in order to unambiguously detect it. We show that our calculations provide the necessary theoretical information for such an experiment, and give a detailed discussion of a suitable parameter range.Comment: 17pp., REVTeX, 7 figure attached as 8 postscript files, db/94/

    Does Scientific Progress Consist in Increasing Knowledge or Understanding?

    Get PDF
    Bird argues that scientific progress consists in increasing knowledge. DellsĂ©n objects that increasing knowledge is neither necessary nor sufficient for scientific progress, and argues that scientific progress rather consists in increasing understanding. DellsĂ©n also contends that unlike Bird’s view, his view can account for the scientific practices of using idealizations and of choosing simple theories over complex ones. I argue that DellsĂ©n’s criticisms against Bird’s view fail, and that increasing understanding cannot account for scientific progress, if acceptance, as opposed to belief, is required for scientific understanding

    Comments on "Entropy of 2D Black Holes from Counting Microstates"

    Full text link
    In a recent letter, Cadoni and Mignemi proposed a formulation for the statistical computation of the 2D black holes entropy. We present a criticism about their formulation.Comment: 5 pages, Latex, no figure
    • 

    corecore