1,660 research outputs found

    Purification and functional reconstitution of human olfactory receptor expressed in Escherichia coli

    Get PDF
    Olfactory receptors (ORs), belonging to the Gprotein coupled receptor (GPCR) family, are very difficult to be overexpressed, purified and reconstituted because of their hydrophobicity and complicated structure. These receptors bind to their specific ligands, thus their specificity is very useful for application as a bioelectronic nose. Furthermore, highly purified and well-reconstituted human olfactory receptor (hOR) can be used in various fields, such as in protein-interaction research, drug screening, and analysis of the hOR structure. In this study, human olfactory receptor, hOR2AG1, was produced with high purity and functionally reconstituted in detergent micelles. The hOR2AG1 was overexpressed in Escherichia coli (E. coli) with glutathione S-transferase (GST) and 6xHis-tag as an inclusion body. The hOR2AG1 fusion protein was solubilized in buffer containing sodium dodecyl sulfate (SDS) and purified using Ni-NTA chromatography. The GST domain was removed using proteolytic cleavage before elution from the column. After purification, the hOR2AG1 was successfully reconstituted using nonionic detergents and methyl-ß-cyclodextrin. Finally highly purified and well-reconstituted hOR was obtained, and its biological characteristics were confirmed by using circular dichroism (CD) spectrum and tryptophan fluorescence assay. These results can be applied to develop protein-based sensing systems including a bioelectronic nose and to analyze the native hOR structure using solid-state NMR, X-ray crystallography, or neutron scattering.Korea (South). Ministry of Science, ICT and Future Planning (Grants2014039771 and 2014053108)Korea Institute of Science and Technology (KIST) (Project 2E24812-14-043

    Weakly- and Self-Supervised Learning for Content-Aware Deep Image Retargeting

    Full text link
    This paper proposes a weakly- and self-supervised deep convolutional neural network (WSSDCNN) for content-aware image retargeting. Our network takes a source image and a target aspect ratio, and then directly outputs a retargeted image. Retargeting is performed through a shift map, which is a pixel-wise mapping from the source to the target grid. Our method implicitly learns an attention map, which leads to a content-aware shift map for image retargeting. As a result, discriminative parts in an image are preserved, while background regions are adjusted seamlessly. In the training phase, pairs of an image and its image-level annotation are used to compute content and structure losses. We demonstrate the effectiveness of our proposed method for a retargeting application with insightful analyses.Comment: 10 pages, 11 figures. To appear in ICCV 2017, Spotlight Presentatio

    Bioelectronic nose and its application to smell visualization

    Get PDF
    There have been many trials to visualize smell using various techniques in order to objectively express the smell because information obtained from the sense of smell in human is very subjective. So far, well-trained experts such as a perfumer, complex and large-scale equipment such as GC-MS, and an electronic nose have played major roles in objectively detecting and recognizing odors. Recently, an optoelectronic nose was developed to achieve this purpose, but some limitations regarding the sensitivity and the number of smells that can be visualized still persist. Since the elucidation of the olfactory mechanism, numerous researches have been accomplished for the development of a sensing device by mimicking human olfactory system. Engineered olfactory cells were constructed to mimic the human olfactory system, and the use of engineered olfactory cells for smell visualization has been attempted with the use of various methods such as calcium imaging, CRE reporter assay, BRET, and membrane potential assay; however, it is not easy to consistently control the condition of cells and it is impossible to detect low odorant concentration. Recently, the bioelectronic nose was developed, and much improved along with the improvement of nanobiotechnology. The bioelectronic nose consists of the following two parts: primary transducer and secondary transducer. Biological materials as a primary transducer improved the selectivity of the sensor, and nanomaterials as a secondary transducer increased the sensitivity. Especially, the bioelectronic noses using various nanomaterials combined with human olfactory receptors or nanovesicles derived from engineered olfactory cells have a potential which can detect almost all of the smells recognized by human because an engineered olfactory cell might be able to express any human olfactory receptor as well as can mimic human olfactory system. Therefore, bioelectronic nose will be a potent tool for smell visualization, but only if two technologies are completed. First, a multi-channel array-sensing system has to be applied for the integration of all of the olfactory receptors into a single chip for mimicking the performance of human nose. Second, the processing technique of the multi-channel system signals should be simultaneously established with the conversion of the signals to visual images. With the use of this latest sensing technology, the realization of a proper smell-visualization technology is expected in the near future.OAIID:RECH_ACHV_DSTSH_NO:T201623726RECH_ACHV_FG:RR00200001ADJUST_YN:EMP_ID:A002014CITE_RATE:3FILENAME:8. (2016.12) Bioelectronic nose and its application to.pdfDEPT_NM:화학생물공학부EMAIL:[email protected]_YN:YFILEURL:https://srnd.snu.ac.kr/eXrepEIR/fws/file/73731554-3f63-44ce-b7bf-1dd3ac2be10a/linkCONFIRM:

    Human dopamine receptor nanovesicles for gate-potential modulators in high-performance field-effect transistor biosensors

    Get PDF
    The development of molecular detection that allows rapid responses with high sensitivity and selectivity remains challenging. Herein, we demonstrate the strategy of novel bio-nanotechnology to successfully fabricate high-performance dopamine (DA) biosensor using DA Receptor-containing uniform-particle-shaped Nanovesicles-immobilized Carboxylated poly(3,4-ethylenedioxythiophene) (CPEDOT) NTs (DRNCNs). DA molecules are commonly associated with serious diseases, such as Parkinson's and Alzheimer's diseases. For the first time, nanovesicles containing a human DA receptor D1 (hDRD1) were successfully constructed from HEK-293 cells, stably expressing hDRD1. The nanovesicles containing hDRD1 as gate-potential modulator on the conducting polymer (CP) nanomaterial transistors provided high-performance responses to DA molecule owing to their uniform, monodispersive morphologies and outstanding discrimination ability. Specifically, the DRNCNs were integrated into a liquid-ion gated field-effect transistor (FET) system via immobilization and attachment processes, leading to high sensitivity and excellent selectivity toward DA in liquid state. Unprecedentedly, the minimum detectable level (MDL) from the field-induced DA responses was as low as 10 pM in real- time, which is 10 times more sensitive than that of previously reported CP based-DA biosensors. Moreover, the FET-type DRNCN biosensor had a rapid response time (<1 s) and showed excellent selectivity in human serum

    Soluble expression and stability enhancement of transcription factors using 30Kc19 cell-penetrating protein

    Get PDF
    Transcription factors have been studied as an important drug candidate. Ever since the successful generation of induced pluripotent stem cells (iPSCs), there has been tremendous interest in reprogramming transcription factors. Because of the safety risks involved in a virus-based approach, many researchers have been trying to deliver transcription factors using nonintegrating materials. Thus, delivery of transcription factors produced as recombinant proteins in E. coli was proposed as an alternative method. However, the low level of soluble expression and instability of such recombinant proteins are potential barriers. We engineered a Bombyx mori 30Kc19 protein as a fusion partner for transcription factors to overcome those problems. We have previously reported that 30Kc19 protein can be produced as a soluble form in E. coli and has a cell-penetrating property and a protein-stabilizing effect. Transcription factors fused with 30Kc19 (Oct4-30Kc19, Sox2-30Kc19, c-Myc-30Kc19, L-Myc-30Kc19, and Klf4-30Kc19) were produced as recombinant proteins. Interestingly, Oct4 and L-Myc were expressed as a soluble form by conjugating with 30Kc19 protein, whereas Oct4 alone and L-Myc alone aggregated. The 30Kc19 protein also enhanced the stability of transcription factors both in vitro and in cells. In addition, 30Kc19-conjugated transcription factors showed rapid delivery into cells and transcriptional activity significantly increased. Overall, 30Kc19 protein conjugation simultaneously enhanced soluble expression, stability, and transcriptional activity of transcription factors. We propose that the conjugation with 30Kc19 protein is a novel approach to solve the technical bottleneck of gene regulation using transcription factors.OAIID:RECH_ACHV_DSTSH_NO:T201623709RECH_ACHV_FG:RR00200001ADJUST_YN:EMP_ID:A002014CITE_RATE:3.376FILENAME:2. (2016.04) Soluble expression and stability enhancement of.pdfDEPT_NM:화학생물공학부EMAIL:[email protected]_YN:YFILEURL:https://srnd.snu.ac.kr/eXrepEIR/fws/file/0df54ee9-e9f1-4612-9d6e-6deaa8197e3e/linkCONFIRM:

    Non-Dioxin-Like Polychlorinated Biphenyls Inhibit G-Protein Coupled Receptor-Mediated Ca2+ Signaling by Blocking Store-Operated Ca2+ Entry

    Get PDF
    Polychlorinated biphenyls (PCBs) are ubiquitous pollutants which accumulate in the food chain. Recently, several molecular mechanisms by which non-dioxin-like (NDL) PCBs mediate neurodevelopmental and neurobehavioral toxicity have been elucidated. However, although the G-protein coupled receptor (GPCR) is a significant target for neurobehavioral disturbance, our understanding of the effects of PCBs on GPCR signaling remains unclear. In this study, we investigated the effects of NDL-PCBs on GPCR-mediated Ca2+ signaling in PC12 cells. We found that ortho-substituted 2,2&apos;, 6-trichlorinated biphenyl (PCB19) caused a rapid decline in the Ca2+ signaling of bradykinin, a typical Gq-and phospholipase C beta-coupled GPCR, without any effect on its inositol 1,4,5-trisphosphate production. PCB19 reduced thapsigargin-induced sustained cytosolic Ca2+ levels, suggesting that PCB19 inhibits SOCE. The abilities of other NDL-PCBs to inhibit store-operated Ca2+ entry (SOCE) were also examined and found to be of similar potencies to that of PCB19. PCB19 also showed a manner equivalent to that of known SOCE inhibitors. PCB19-mediated SOCE inhibition was confirmed by demonstrating the ability of PCB19 to inhibit the SOCE current and thapsigargin-induced Mn2+ influx. These results imply that one of the molecular mechanism by which NDL-PCBs cause neurobehavioral disturbances involves NDL-PCB-mediated inhibition of SOCE, thereby interfering with GPCR-mediated Ca2+ signaling.1142Ysciescopu

    Disassembly of Subplasmalemmal Actin Filaments Induces Cytosolic Ca2+ Increases in Astropecten aranciacus Eggs

    Get PDF
    Background/Aims: Eggs of all animal species display intense cytoplasmic Ca2+ increases at fertilization. Previously, we reported that unfertilized eggs of Astropecten aranciacus exposed to an actin drug latrunculin A (LAT-A) exhibit similar Ca2+ waves and cortical flashes after 5-10 min time lag. Here, we have explored the molecular mechanisms underlying this unique phenomenon. Methods: Starfish eggs were pretreated with various agents such as other actin drugs or inhibitors of phospholipase C (PLC), and the changes of the intracellular Ca2+ levels were monitored by use of Calcium Green in the presence or absence of LAT-A. The concomitant changes of the actin cytoskeleton were visualized with fluorescent F-actin probes in confocal microscopy. Results: We have shown that the LAT-A-induced Ca2+ increases are related to the disassembly of actin flaments: i) not only LAT-A but also other agents depolymerizing F-actin (i.e. cytochalasin B and mycalolide B) induced similar Ca2+ increases, albeit with slightly lower efficiency; ii) drugs stabilizing F-actin (i.e. phalloidin and jasplakinolide) either blocked or significantly delayed the LAT-A-induced Ca2+ increases. Further studies utilizing pharmacological inhibitors of PLC (U-73122 and neomycin), dominant negative mutant of PLC-ɣ, specific sequestration of PIP2 (RFP-PH), InsP3 uncaging, and quantitation of endogenous InsP3 all indicated that LAT-A induces Ca2+ increases by stimulating PLC rather than sensitizing InsP3 receptors. In support of the idea, it bears emphasis that LAT-A timely increased intracellular contents of InsP3 with concomitant decrease of PIP2 levels in the plasma membrane. Conclusion: Taken together, our results suggest that suboolemmal actin filaments may serve as a scaffold for cell signaling and modulate the activity of the key enzyme involved in intracellular Ca2+ signaling

    Detection of aquaporin-4 antibody using aquaporin-4 extracellular loop-based carbon nanotube biosensor for the diagnosis of neuromyelitis optica

    Get PDF
    Here we propose a carbon nanotube (CNT) field-effect transistor (FET) functionalized with aquaporin-4 (AQP4) extracellular loop peptides for the rapid detection of AQP4 antibody without pretreatment. Neuromyelitis optica (NMO) is a rare disease of the central nerve system that affects the optic nerves and the spinal cord. NMO-IgG, a serum antibody in patients, is highly specific for NMO and targets AQP4. We synthesized AQP4 extracellular loop peptides, known as primary autoimmune target in NMO, and immobilized them onto CNT-FET. The sensor showed p-type FET characteristics after the functionalization of peptides. The sensor was able to detect antibody with a detection limit of 1 ng l-1 . Moreover, AQP4 antibody in human serum was detected without any pretreatment. These results indicate that the biosensor can be used for rapid and simple detection of NMO antibody.OAIID:RECH_ACHV_DSTSH_NO:T201623708RECH_ACHV_FG:RR00200001ADJUST_YN:EMP_ID:A002014CITE_RATE:7.476FILENAME:1. (2016.04) Detection of aquaporin-4 antibody using aquaporin-4 extracellular.pdfDEPT_NM:화학생물공학부EMAIL:[email protected]_YN:YFILEURL:https://srnd.snu.ac.kr/eXrepEIR/fws/file/daebf249-842a-4b5c-bbc2-0b51d01edbb2/linkCONFIRM:

    Bis(μ-trimethyl­silanolato-κ2 O:O)bis­{[2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentyl­phenolato-κ2 N,O]zinc}

    Get PDF
    The binuclear title complex, [Zn2(C22H28N3O)2(C3H9OSi)2], has a crystallographic imposed centre of symmetry. The ZnII atom is coordinated by three O and one N atom from one 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentyl­phenolate ligand and two bridging trimethyl­silanolate anions in a distorted tetra­hedral geometry. The dihedral angle between the benzotriazole ring system and the benzene ring is 19.83 (5)°. The tert-pentyl groups are disordered over two orientations with refined site-occupancy ratios of 0.858 (4):0.142 (4) and 0.665 (6):0.335 (6)
    corecore