3,793 research outputs found

    User Attraction via Wireless Charging in Cellular Networks

    Full text link
    A strong motivation of charging depleted battery can be an enabler for network capacity increase. In this light we propose a spatial attraction cellular network (SAN) consisting of macro cells overlaid with small cell base stations that wirelessly charge user batteries. Such a network makes battery depleting users move toward the vicinity of small cell base stations. With a fine adjustment of charging power, this user spatial attraction (SA) improves in spectral efficiency as well as load balancing. We jointly optimize both enhancements thanks to SA, and derive the corresponding optimal charging power in a closed form by using a stochastic geometric approach.Comment: to be presented in IEEE International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt) Workshop on Green Networks (GREENNET) 2016, Arizona, USA (8 pages, 4 figures

    Nearly Deterministic Bell Measurement for Multiphoton Qubits and Its Application to Quantum Information Processing

    Get PDF
    We propose a Bell measurement scheme by employing a logical qubit in Greenberger-Horne-Zeilinger (GHZ) entanglement with an arbitrary number of photons. Remarkably, the success probability of the Bell measurement as well as teleportation of the GHZ entanglement can be made arbitrarily high using only linear optics elements and photon on-off measurements as the number of photons increases. Our scheme outperforms previous proposals using single photon qubits when comparing the success probabilities in terms of the average photon usages. It has another important advantage for experimental feasibility that it does not require photon number resolving measurements. Our proposal provides an alternative candidate for all-optical quantum information processing.Comment: 7 pages (including supplementary material), 2 figures, to be published in Phys. Rev. Let

    Probabilistic safety assessment-based importance analysis of cyber-attacks on nuclear power plants

    Get PDF
    With the application of digital technology to safety-critical infrastructures, cyber-attacks have emerged as one of the new dangerous threats. In safety-critical infrastructures such as a nuclear power plant (NPP), a cyber-attack could have serious consequences by initiating dangerous events or rendering important safety systems unavailable. Since a cyber-attack is conducted intentionally, numerous possible cases should be considered for developing a cyber security system, such as the attack paths, methods, and potential target systems. Therefore, prior to developing a risk-informed cyber security strategy, the importance of cyber-attacks and significant critical digital assets (CDAs) should be analyzed. In this work, an importance analysis method for cyber-attacks on an NPP was proposed using the probabilistic safety assessment (PSA) method. To develop an importance analysis framework for cyber-attacks, possible cyber-attacks were identified with failure modes, and a PSA model for cyber-attacks was developed. For case studies, the quantitative evaluations of cyber-attack scenarios were performed using the proposed method. By using quantitative importance of cyber-attacks and identifying significant CDAs that must be defended against cyber-attacks, it is possible to develop an efficient and reliable defense strategy against cyber-attacks on NPPs

    Invasion and Interaction Determine Population Composition in an Open Evolving System

    Full text link
    It is well-known that interactions between species determine the population composition in an ecosystem. Conventional studies have focused on fixed population structures to reveal how interactions shape population compositions. However, interaction structures are not fixed, but change over time due to invasions. Thus, invasion and interaction play an important role in shaping communities. Despite its importance, however, the interplay between invasion and interaction has not been well explored. Here, we investigate how invasion affects the population composition with interactions in open evolving systems considering generalized Lotka-Volterra-type dynamics. Our results show that the system has two distinct regimes. One is characterized by low diversity with abrupt changes of dominant species in time, appearing when the interaction between species is strong and invasion slowly occurs. On the other hand, frequent invasions can induce higher diversity with slow changes in abundances despite strong interactions. It is because invasion happens before the system reaches its equilibrium, which drags the system from its equilibrium all the time. All species have similar abundances in this regime, which implies that fast invasion induces regime shift. Therefore, whether invasion or interaction dominates determines the population composition.Comment: 15 pages (including supplementary material), 8 figures (4 figures in main, 4 figures in SI

    Motif Dynamics in Signed Directional Complex Networks

    Full text link
    Complex networks evolve and vary their structure as time goes by. In particular, the links in those networks have both a sign and a directionality. To understand their structural principles, we measure the network motifs, which are patterns that appear much more than one would expect in randomized networks, considering both link properties. We propose motif dynamics, which is a study to investigate the change in the number of motifs, and applied the motif dynamics to an open evolving network model and empirical data. We confirm that a non-cyclic motif has a greater correlation with the system size than a cyclic structural motif. Furthermore, the motif dynamics can give us insight into the friendship between freshmen in a university

    The Light and Period Variations of the Eclipsing Binary BX Draconis

    Full text link
    New CCD photometric observations of BX Dra were obtained for 26 nights from 2009 April to 2010 June. The long-term photometric behaviors of the system are presented from detailed studies of the period and light variations, based on the historical data and our new observations. All available light curves display total eclipses at secondary minima and inverse O'Connell effects with Max I fainter than Max II, which are satisfactorily modeled by adding the slightly time-varying hot spot on the primary star. A total of 87 times of minimum light spanning over about 74 yrs, including our 22 timing measurements, were used for ephemeris computations. Detailed analysis of the O-C diagram showed that the orbital period has changed in combinations with an upward parabola and a sinusoidal variation. The continuous period increase with a rate of +5.65 \times 10^-7 d yr^-1 is consistent with that calculated from the Wilson-Devinney synthesis code. It can be interpreted as a mass transfer from the secondary to the primary star at a rate of 2.74 \times 10^-7 M\odot yr^-1, which is one of the largest rates for contact systems. The most likely explanation of the sinusoidal variation with a period of 30.2 yrs and a semi-amplitude of 0.0062 d is a light-traveltime effect due to the existence of a circumbinary object. We suggest that BX Dra is probably a triple system, consisting of a primary star with a spectral type of F0, its secondary component of spectral type F1-2, and an unseen circumbinary object with a minimum mass of M3 = 0.23 M\odot.Comment: 24 pages, including 5 figures and 9 tables, accepted for publication in PAS

    The Light and Period Variations of the Eclipsing Binary AA Ursae Majoris

    Full text link
    We present new multiband CCD photometry for AA UMa made on 8 nights between January and March 2009; the RR light curves are the first ever compiled. Historical light curves, as well as ours, display partial eclipses and inverse O'Connell effects with Max I fainter than Max II. Among possible spot models, a cool spot on either of the component stars and its variability with time permit good light-curve representations for the system. A total of 194 eclipse timings over 81 yrs, including our five timings, were used for ephemeris computations. We found that the orbital period of the system has varied due to a periodic oscillation overlaid on an upward parabolic variation. The continuous period increase at a fractional rate of ++1.3Γ—\times10βˆ’10^{-10} is consistent with that calculated from the W-D code and can be interpreted as a thermal mass transfer from the less to the more massive secondary star at a rate of 6.6Γ—\times10βˆ’8^{-8} MβŠ™_\odot yrβˆ’1^{-1}. The periodic component is in satisfactory accord with a light-time effect due to an unseen companion with a period of 28.2 yrs, a semi-amplitude of 0.007 d, and a minimum mass of M3sin⁑i3M_3 \sin i_3=0.25 MβŠ™M_\odot but this period variation could also arise from magnetic activity.Comment: 23 pages, including 5 figures and 8 tables, accepted for publication in PAS
    • …
    corecore