358 research outputs found

    Radiation-Induced Graft Polymerization of Vinyl Monomers with Anion Groups onto MWNT Supports and Their Application as Electrogenerated Chemiluminescence (ECL) Biosensors

    Get PDF
    Vinyl polymer-grafted multiwalled carbon nanotube (MWNT) supports with anion groups were prepared for use as biosensor supports by radiation-induced graft polymerization (RIGP) of the vinyl monomers acryloyl diphosphoric acid (ADPA), acrylic acid (AA), sodium styrenesulfonate (NaSS), and methacrylic acid (MA) onto the surface of MWNTs. The electrogenerated chemiluminescence sensors based on a glass carbon electrode (ECL-GCE) and a screen printed electrode (ECL-SPE) were fabricated by immobilization of Ru(bpy)3 2+ complex after coating of vinyl polymer-grafted MWNT inks on the surface of the GCE and SPE without any polymer binders in order to obtain high electrogenerated chemiluminescence intensity. For detection of alcohol concentration, alcohol dehydrogenase (ADH) was immobilized onto an ECL-GCE sensor prepared by poly(NaSS)-g-MWNT supports. The prepared biosensor based on ADH is suitable for the detection of ethanol concentration in commercial drinks

    Enhancement of phase separation in the InGaN layer for self-assembled In-rich quantum dots

    Get PDF
    The enhancement of phase separation in the InGaN layer grown on a GaN layer with a rough surface was investigated for the formation of self-assembled In-rich quantum dots(QDs) in the InGaN layer. Transmission electron microscopy images showed that In-rich QDs with a size of 2–5 nm were formed even in an InGaN layer with a low indium content, and a layer thickness less than the critical thickness. The room-temperature photoluminescence(PL) spectrum of this layer showed emission peaks corresponding to In-rich QDs. The temperature-dependent PL spectra showed dominant peak shifts to the lower energy side, indicating that the self-assembled In-rich QDs are formed in the InGaN layer grown on a rough GaNsurface and that the carriers are localized in In-rich QDs

    Size distributions of atmospheric particulate matter and associated trace metals in the multi-industrial city of Ulsan, Korea

    Get PDF
    Particulate matter (PM) was collected using micro-orifice uniform deposit impactors from a residential (RES) site and an industrial (IND) site in Ulsan, South Korea, in September-October 2014. The PM samples were measured based on their size distributions (11 stages), ranging from 0.06 ??m to over 18.0 ??m. Nine trace metals (As, Se, Cr, V, Cd, Pb, Ba, Sb, and Zn) associated with PM were analyzed. The PM samples exhibited weak bimodal distributions irrespective of sampling sites and events, and the mean concentrations of total PM (TPM) measured at the IND site (56.7 ??g/m3) was higher than that measured at the RES site (38.2 ??g/m3). The IND site also showed higher levels of nine trace metals, reflecting the influence of industrial activities and traffic emissions. At both sites, four trace metals (Ba, Zn, V, and Cr) contributed to over 80% of the total concentrations in TPM. The modality of individual trace metals was not strong except for Zn; however, the nine trace metals in PM2.5 and PM10 accounted for approximately 50% and 90% of the total concentrations in TPM, respectively. This result indicates that the size distributions of PM and trace metals are important to understand how respirable PM affects public health

    Collagen Immobilization on Ultra-thin Nanofiber Membrane to Promote In Vitro Endothelial Monolayer Formation

    Get PDF
    The endothelialization on the poly (epsilon-caprolactone) nanofiber has been limited due to its low hydrophilicity. The aim of this study was to immobilize collagen on an ultra-thin poly (epsilon-caprolactone) nanofiber membrane without altering the nanofiber structure and maintaining the endothelial cell homeostasis on it. We immobilized collagen on the poly (epsilon-caprolactone) nanofiber using hydrolysis by NaOH treatment and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/sulfo-N-hydroxysulfosuccinimide reaction as a cost-effective and stable approach. NaOH was first applied to render the poly (epsilon-caprolactone) nanofiber hydrophilic. Subsequently, collagen was immobilized on the surface of the poly (epsilon-caprolactone) nanofibers using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/sulfo-N-hydroxysulfosuccinimide. Scanning electron microscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and fluorescence microscopy were used to verify stable collagen immobilization on the surface of the poly (epsilon-caprolactone) nanofibers and the maintenance of the original structure of poly (epsilon-caprolactone) nanofibers. Furthermore, human endothelial cells were cultured on the collagen-immobilized poly (epsilon-caprolactone) nanofiber membrane and expressed tight junction proteins with the increase in transendothelial electrical resistance, which demonstrated the maintenance of the endothelial cell homeostasis on the collagen-immobilized-poly (epsilon-caprolactone) nanofiber membrane. Thus, we expected that this process would be promising for maintaining cell homeostasis on the ultra-thin poly (epsilon-caprolactone) nanofiber scaffolds.11Ysciescopu

    Catecholamines May Play an Important Role in the Pathogenesis of Transient Mid- and Basal Ventricular Ballooning Syndrome

    Get PDF
    The exact pathogenesis of transient mid- and basal ventricular ballooning, a new variant of transient left ventricular (LV) ballooning, remains unknown. We report two cases of transient mid- and basal ventricular ballooning associated with catecholamines. These cases suggest that catecholamine-mediated myocardial dysfunction might be a potential mechanism of this syndrome

    Simultaneous detection and subtyping of porcine endogenous retroviruses proviral DNA using the dual priming oligonucleotide system

    Get PDF
    The purpose of this study was to develop a multiplex PCR that can detect porcine endogenous retrovirus (PERV) proviral genes (pol, envA, envB, envC) and porcine mitochondrial DNA, using a dual priming oligonucleotide (DPO) system. The primer specifically detected the PERV proviral genes pol, envA, envB, envC, and porcine mitochondrial DNA only in samples of pig origin. The sensitivity of the primer was demonstrated by simultaneous amplification of all 5 target genes in as little as 10 pg of pig DNA containing PERV proviral genes and mitochondrial DNA. The multiplex PCR, when applied to field samples, simultaneously and successfully amplified PERV proviral genes from liver, blood and hair root samples. Thus, the multiplex PCR developed in the current study using DPO-based primers is a rapid, sensitive and specific assay for the detection and subtyping of PERV proviral genes

    Phenotyping of rice in salt stress environment using high-throughput infrared imaging

    Get PDF
    Phenotyping of rice (Oryza sativa L. cv. Donggin) in salt stress environment using infrared imaging was conducted. Results were correlated with the most frequently used physiological parameters such as stomatal conductance, relative water content and photosynthetic parameters. It was observed that stomatal conductance (R2 = –0.618) and relative water content (R2 = –0.852) were significantly negatively correlated with average plant temperature (thermal images), while dark-adapted quantum yield (Fv/Fm, R2 = –0.325) and performance index (R2 = –0.315) were not consistent with plant temperature. Advantages of infrared thermography and utilization of this technology for the selection of stress tolerance physiotypes are discussed in detail

    Transcatheter coil embolization of the inferior epigastric artery in a huge abdominal wall hematoma caused by paracentesis in a patient with liver cirrhosis

    Get PDF
    Therapeutic paracentesis is considered to be a relatively safe procedure and is performed commonly for the control of massive ascites in patients with liver cirrhosis. The commonest puncture site, approximately 4 or 5 cm medial of left anterior superior iliac spine, can be located across the route of the inferior epigastric artery, which is one of the sites of potential massive bleeding. In a 46-year-old woman with liver cirrhosis and refractory ascites, a huge abdominal wall hematoma developed after therapeutic paracentesis. The patient was not stabilized by conservative treatment, and inferior epigastric artery injury was confirmed on angiography. Angiographic coil embolization of the inferior epigastric artery was conducted, after which the bleeding ceased and the hematoma stopped growing. This case indicates that physicians performing paracentesis should be aware of the possibility of inferior epigastric artery injury and consider early angiographic coil embolization when a life-threatening abdominal wall hematoma develops
    corecore