2,564 research outputs found

    Comments on "The Role of the Central Asian Mountains on the Midwinter Suppression of North Pacific Storminess" - Reply

    Get PDF
    We thank Chang and Lin for their thoughtful and constructive comments on our study (Park et al. 2010). In Park et al. (2010), we did not explicitly state that the topography-forced stationary waves are the direct cause for the reduced downstream transient eddy kinetic energy (EKE). The response of stationary waves to topography may saturate even with a relatively small mountain (Cook and Held 1992); furthermore, their magnitudes are much smaller than thermally forced stationary waves (Chang 2009; Held et al. 2002). Instead, we suggest that quasistationary waves generated by the central Asian mountains may strongly affect North Pacific storminess by changing the year-to-year variability of westerly winds over the eastern Eurasian continent. Observational analyses indicate that the midwinter suppression of North Pacific storminess does not occur every year. Some years experience stronger and more meridionally confined zonal winds over the western North Pacific, leading to stronger midwinter suppression (Harnik and Chang 2004; Nakamura and Sampe 2002)

    The impact of Arctic sea ice loss on mid-Holocene climate.

    Get PDF
    Mid-Holocene climate was characterized by strong summer solar heating that decreased Arctic sea ice cover. Motivated by recent studies identifying Arctic sea ice loss as a key driver of future climate change, we separate the influences of Arctic sea ice loss on mid-Holocene climate. By performing idealized climate model perturbation experiments, we show that Arctic sea ice loss causes zonally asymmetric surface temperature responses especially in winter: sea ice loss warms North America and the North Pacific, which would otherwise be much colder due to weaker winter insolation. In contrast, over East Asia, sea ice loss slightly decreases the temperature in early winter. These temperature responses are associated with the weakening of mid-high latitude westerlies and polar stratospheric warming. Sea ice loss also weakens the Atlantic meridional overturning circulation, although this weakening signal diminishes after 150-200 years of model integration. These results suggest that mid-Holocene climate changes should be interpreted in terms of both Arctic sea ice cover and insolation forcing

    Has globalization strengthened South Korea's national research system?

    Get PDF
    노트 : The authors acknowledge a support from the SSK (Social Science Korea) Program funded by National Research Foundation of South Korea; NRF-2010-330-B00232
    • …
    corecore