13 research outputs found

    New photopatternable polyimide and programmable nonvolatile memory performances

    Get PDF
    We report the first photopatternable, nonvolatile memory consisting of high-temperature polyimide (PI), poly (hexafluoroisopropylidenediphthalimide-4-cinnamoyloxytri-phenylamine) (6F-HTPA-CI), and we demonstrate the successful fabrication and programmable operation of 'write-read-erase' memory devices based on nanoscale thin films of 6F-HTPA-CI. The PI thin film enables scalable fine patternability, providing lines and spaces with excellent pattern fidelity. Isolated individual memory devices were successfully fabricated on a bottom electrode via a sequential process of coating, photopatterning, top electrode deposition, developing, rinsing and drying. The 6F-HTPA-CI cells exhibited excellent nonvolatile memory performances in three different modes (unipolar permanent, unipolar flash and bipolar flash memories), regardless of photo-exposure doses. The switching-ON (writing) voltage was in the range of +/- 1.5 to +/- 2.0 V, and the switching-OFF (erasing) voltage was in the range of +/- 0.3 to +/- 0.8 V; these voltages are quite low, indicating that power consumption by the devices during operation is low. The ON/OFF current ratio of the devices was in the range of 10(4)-10(9). Overall, the photopatternable PI 6F-HTPA-CI opens up the possibility of low-cost mass production of high-performance, high-speed, energy-efficient, permanent or rewritable high-density nonvolatile polymer memory devices suitable for future advanced electronics in highly integrated systems.111Ysciescopu

    Synthesis and nonvolatile memory characteristics of thermally, dimensionally and chemically stable polyimides

    No full text
    A series of soluble poly(amic acid) precursors were prepared from a new carbzole-containing monomer, 3,3'-bis[9-carbazole(ethyloxy)biphenyl]-4,4'-diamine (HAB-CBZ) by polycondensation with four different aromatic dianhydrides: pyromellitic dianhydride (PMDA), 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), 3,3',4,4'-diphenylethertetracarboxylic dianhydride (ODPA), and 3,3',4,4'-diphenylsulfonyltetracarboxylic dianhydride (DSDA). From the precursors, nanoscale thin films of polyimides (PIs) were prepared by spin-coating and subsequent thermal imidization. All the PIs exhibited excellent thermal and dimensional stability. In particular, the PIs based on the PMDA and BPDA units revealed excellent chemical resistance to organic solvents, in addition to the high thermal and dimensional stability, which are required for the fabrication of high performance memory devices in three-dimensionally multi-stack structure. Devices fabricated with nanoscale thin PI films exhibited excellent unipolar write-once-read-many-times (WORM) memory behavior with a high ON/OFF current ratio of up to 10(10). The active PI films were found to operate at 2.2-3.3 V, depending on the chemical structures. This study found that the imide rings as local charge trap sites are necessary to enhance the memory performance in addition to carbazole moiety. All the results collectively indicate that the thermally, dimensionally and chemically stable PIs of this study are a promising material for the mass production at low cost of high performance, programmable nonvolatile WORM memory devices that can be operated with low power consumption in unipolar switching mode. (C) 2011 Elsevier Ltd. All rights reserved.X113936sciescopu

    Acid-Treated Water-Soluble Chitosan Suitable for Microneedle-Assisted Intracutaneous Drug Delivery

    No full text
    Chitosan has been widely used as a nature-derived polymeric biomaterial due to its high biocompatibility and abundance. However, poor solubility in aqueous solutions of neutral pH and multiple fabrication steps for the molding process limit its application to microneedle technology as a drug delivery carrier. Here, we present a facile method to prepare water-soluble chitosan and its application for sustained transdermal drug delivery. The water-soluble chitosan was prepared by acid hydrolysis using trifluoroacetic acid followed by dialysis in 0.1 M NaCl solutions. We successfully fabricated bullet-shaped microneedle (MN) arrays by the single molding process with neutral aqueous chitosan solutions (pH 6.0). The chitosan MN showed sufficient mechanical properties for skin insertion and, interestingly, exhibited slow dissolving behavior in wet conditions, possibly resulting from a physical crosslinking of chitosan chains. Chitosan MN patches loading rhodamine B, a model hydrophilic drug, showed prolonged release kinetics in the course of the dissolving process for more than 72 h and they were found to be biocompatible to use. Since the water-soluble chitosan can be used for MN fabrication in the mild conditions (neutral pH and 25 °C) required for the loading of bioactive agents such as proteins and achieve a prolonged release, this biocompatible chitosan MN would be suitable for sustained transdermal drug delivery of a diverse range of drugs

    Self-Assembled Brush Polymers Bearing Glycine Derivatives and Their Biocompatibility

    No full text
    1

    Nanostructure- and Orientation-Controlled Digital Memory Behaviors of Linear-Brush Diblock Copolymers in Nanoscale Thin Films

    No full text
    Linear-brush diblock copolymers bearing carbazole moieties in the brush block were synthesized. Various phase-separated nanostructures were found to develop in nanoscale thin films of the copolymers, depending on the fabrication conditions including selective solvent-annealing. This variety of morphologies and orientations means that these block copolymers exhibit digital memory versatility in their devices. Overall, the relationship between the morphology and digital memory performance of these copolymers has several important features. In particular, the carbazole moieties in the vertical cylinder phase with a radius of 8 nm or less can trap charges and also form local hopping paths for charge transport, which opens the mass production of advanced digital memory devices with ultrahigh memory density. Charges can be transported through the layer when the dielectric linear block phase has a thickness of 10.6 nm; however, charge transport is not possible for a dielectric phase with a thickness of 15.9 nm. All the observed memory behaviors are governed by the trap-limited space-charge-limited conduction mechanism and local hopping path (i.e., filament) formation

    Electrical Memory Characteristics of a Nondoped π-Conjugated Polymer Bearing Carbazole

    No full text
    Poly[bis(9H-carbazole-9-ethyl)dipropargylmalonate] (PCzDPM) is a novel A-conjugated polymer bearing carbazole moieties that has been synthesized by polymerization of bis(9H-carbazole-9-ethyl)dipropargylmalonate with the aid of molybdenum chloride solution as the catalyst. This polymer is thermally stable up to 255 degrees C under a nitrogen atmosphere and 230 degrees C in air ambient; its glass-transition temperature is 147 or 128 degrees C, depending on the polymer chain conformation (helical or planar structure). The charge-transport characteristics of PCzDPM in nanometer-scaled thin films were studied as a function of temperature and film thickness. PCzDPM films with a thickness of 15-30 nm were found to exhibit very stable dynamic random access memory (DRAM) characteristics without polarity. Furthermore, the polymer films retain DRAM characteristics up to 180 degrees C. The ON-state current is dominated by Ohmic conduction, and the OFF-state current appears to undergo a transition from Ohmic to space-charge-limited conduction with a shallow-trap distribution. The ON/OFF switching of the devices is mainly governed by filament formation. The filament formation mechanism for the switching process is supported by the metallic properties of the PCzDPM film, which result in the temperature dependence of the ON-state current. In addition, the structure of this A-conjugated polymer was found to vary with its thermal history; this change in structure can affect filament formation in the polymer film.X1143sciescopu

    The Biocompatibility of Self-Assembled Brush Polymers Bearing Glycine Derivatives

    No full text
    We have synthesized brush polymers with various glycine derivatives as the end groups of their long alkyl bristles. The polymers are thermally stable up to 170-210 degrees C and form good quality films through conventional spin- or dip-coating and subsequent drying. Interestingly, the thin films of these brush polymers exhibit different molecular multi-layer structures that arise through the efficient self-assembly of the bristles with glycine derivative end groups. These brush polymer films have hydrophilic surfaces and exhibit some water sorption. The extent of the water sorption by these films depends upon the nature of the glycine derivatives in the bristle end. These films not only repel fibrinogen molecules and platelets from their surfaces, but also have high resistance to bacterial adherence. Moreover, the films were found to provide conducive surface environments for the successful anchoring and growth of HEp-2 cells, and to exhibit excellent biocompatibility in mice. These brush polymers have potential uses in biomedical applications including medical devices, especially blood contacting devices such as catheters, stents, blood vessels, and biosensors, due to their enhanced biocompatibility and the reduced possibility of post-operative infection. (C) 2010 Elsevier Ltd. All rights reserved.X1117sciescopu
    corecore