27 research outputs found

    Real-Time Neural Video Recovery and Enhancement on Mobile Devices

    Full text link
    As mobile devices become increasingly popular for video streaming, it's crucial to optimize the streaming experience for these devices. Although deep learning-based video enhancement techniques are gaining attention, most of them cannot support real-time enhancement on mobile devices. Additionally, many of these techniques are focused solely on super-resolution and cannot handle partial or complete loss or corruption of video frames, which is common on the Internet and wireless networks. To overcome these challenges, we present a novel approach in this paper. Our approach consists of (i) a novel video frame recovery scheme, (ii) a new super-resolution algorithm, and (iii) a receiver enhancement-aware video bit rate adaptation algorithm. We have implemented our approach on an iPhone 12, and it can support 30 frames per second (FPS). We have evaluated our approach in various networks such as WiFi, 3G, 4G, and 5G networks. Our evaluation shows that our approach enables real-time enhancement and results in a significant increase in video QoE (Quality of Experience) of 24\% - 82\% in our video streaming system

    Enhanced ferroelectric switching speed of Si-doped HfO2 thin film tailored by oxygen deficiency

    Get PDF
    Investigations concerning oxygen deficiency will increase our understanding of those factors that govern the overall material properties. Various studies have examined the relationship between oxygen deficiency and the phase transformation from a nonpolar phase to a polar phase in HfO2 thin films. However, there are few reports on the effects of oxygen deficiencies on the switching dynamics of the ferroelectric phase itself. Herein, we report the oxygen- deficiency induced enhancement of ferroelectric switching properties of Si-doped HfO2 thin films. By controlling the annealing conditions, we controlled the oxygen deficiency concentration in the ferroelectric orthorhombic HfO2 phase. Rapid high-temperature (800 degrees C) annealing of the HfO2 film accelerated the characteristic switching speed compared to low-temperature (600 degrees C) annealing. Scanning transmission electron microscopy and electron energy-loss spectroscopy (EELS) revealed that thermal annealing increased oxygen deficiencies, and first-principles calculations demonstrated a reduction of the energy barrier of the polarization flip with increased oxygen deficiency. A Monte Carlo simulation for the variation in the energy barrier of the polarization flipping confirmed the increase of characteristic switching speed

    Smart Reinvention of the Contact Lens with Graphene

    No full text
    With potential benefits to the 71 million contact lens users worldwide, contact lenses are being reinvented in the form of smart wearable electronics. In this issue of ACS Nano, Lee et al. report on the fascinating functions of a graphene-based smart contact lens that is able to protect eyes from electromagnetic waves and dehydration. Graphene and two-dimensional materials can be exploited in many opportunities in the development of smart contact lenses. Here, we briefly review and describe prospects for the future of smart contact 'lenses that incorporate graphene in their platforms.11Nsciescopu

    Ion beam profiling from the interaction with a freestanding 2D layer

    No full text
    Recent years have seen a great potential of the focused ion beam (FIB) technology for the nanometer-scale patterning of a freestanding two-dimensional (2D) layer. Experimentally determined sputtering yields of the perforation process can be quantitatively explained using the binary collision theory. The main peculiarity of the interaction between the ion beams and the suspended 2D material lies in the absence of collision cascades, featured by no interaction volume. Thus, the patterning resolution is directly set by the beam diameters. Here, we demonstrate pattern resolution beyond the beam size and precise profiling of the focused ion beams. We find out that FIB exposure time of individual pixels can influence the resultant pore diameter. In return, the pore dimension as a function of the exposure dose brings out the ion beam profiles. Using this method of determining an ion-beam point spread function, we verify a Gaussian profile of focused gallium ion beams. Graphene sputtering yield is extracted from the normalization of the measured Gaussian profiles, given a total beam current. Interestingly, profiling of unbeknown helium ion beams in this way results in asymmetry of the profile. Even triangular beam shapes are observed at certain helium FIB conditions, possibly attributable to the trimer nature of the beam source. Our method of profiling ion beams with 2D-layer perforation provides more information on ion beam profiles than the conventional sharp-edge scan method does.ISSN:2190-428

    Ion beam profiling from the interaction with a freestanding 2D layer

    No full text
    Recent years have seen a great potential of the focused ion beam (FIB) technology for the nanometer-scale patterning of a freestanding two-dimensional (2D) layer. Experimentally determined sputtering yields of the perforation process can be quantitatively explained using the binary collision theory. The main peculiarity of the interaction between the ion beams and the suspended 2D material lies in the absence of collision cascades, featured by no interaction volume. Thus, the patterning resolution is directly set by the beam diameters. Here, we demonstrate pattern resolution beyond the beam size and precise profiling of the focused ion beams. We find out that FIB exposure time of individual pixels can influence the resultant pore diameter. In return, the pore dimension as a function of the exposure dose brings out the ion beam profiles. Using this method of determining an ion-beam point spread function, we verify a Gaussian profile of focused gallium ion beams. Graphene sputtering yield is extracted from the normalization of the measured Gaussian profiles, given a total beam current. Interestingly, profiling of unbeknown helium ion beams in this way results in asymmetry of the profile. Even triangular beam shapes are observed at certain helium FIB conditions, possibly attributable to the trimer nature of the beam source. Our method of profiling ion beams with 2D-layer perforation provides more information on ion beam profiles than the conventional sharp-edge scan method does

    Ion Beam Profiling from the Interaction with a Freestanding 2D Layer

    No full text
    Recent years have seen a great potential of the focused ion beam (FIB) technology for the nanometer-scale patterning of a freestanding two-dimensional (2D) layer. Experimentally determined sputtering yields of the perforation process can be quantitatively explained using the binary collision theory. The main peculiarity of the interaction between the ion beams and the suspended 2D material lies in the absence of collision cascades, featured by no interaction volume. Thus, the patterning resolution is directly set by the beam diameters. Here, we demonstrate pattern resolution beyond the beam size and precise profiling of the focused ion beams. We find out that FIB exposure time of individual pixels can influence the resultant pore diameter. In return, the pore dimension as a function of the exposure dose brings out the ion beam profiles. Using this method of determining an ion-beam point spread function, we verify a Gaussian profile of focused gallium ion beams. Graphene sputtering yield is extracted from the normalization of the measured Gaussian profiles, given a total beam current. Interestingly, profiling of unbeknown helium ion beams in this way results in asymmetry of the profile. Even triangular beam shapes are observed at certain helium FIB conditions, possibly attributable to the trimer nature of the beam source. Our method of profiling ion beams with 2D-layer perforation provides more information on ion beam profiles than the conventional sharp-edge scan method does.11Nsciescopu

    Smart Reinvention of the Contact Lens with Graphene

    No full text

    Annealing and Polycrystallinity Effects on the Thermal Conductivity of Supported CVD Graphene Monolayers

    No full text
    The thermal transport properties of graphene are strongly influenced by its contact environment and the strength of such interactions can be used to tailor these properties. Here we find that annealing suppresses the basal plane thermal conductivity (kappa) of graphene supported on silicon dioxide, due to the increased conformity of graphene to the nanoscale asperities of the substrate after annealing. Intriguingly, increasing the polycrystallinity of graphene, grown by chemical vapor deposition on copper, increases the severity of this suppression after annealing, revealing the role of grain boundaries and associated defects in aiding phonon scattering by the substrate. In highly polycrystalline graphene, the value of. after annealing is comparable to that after significant fluorination of an identical unannealed sample. Our experiments employ the suspended micro-bridge platform for basal plane thermal conductivity measurements. Using xenon difluoride gas for the final release also enables the investigation of thermal transport in graphene in contact with polymers. We find evidence for weaker phonon scattering in graphene, due to a 10 nm thick polymer layer on top compared to the pre-existing silicon dioxide substrate, which is a promising result for flexible electronics applications of graphene.11Nsciescopu
    corecore