24 research outputs found

    Removal of Acid Orange 7 dye from wastewater using combination of ultraviolet radiation, ultrasonic method, and MgO nanoparticles

    Get PDF
    Background: Industrial dyes are toxic and carcinogenic, therefore, they should be removed from wastewater. The aim of this study was to investigate the removal of acid orange 7 Dye from wastewater using ultraviolet (UV) radiation, MgO nanoparticles, ultrasonic method alone and in combination with each other. Methods: The effects of some factors such as temperature, pH, hydraulic retention time (HRT), UV power, and concentration of MgO nanoparticles on the removal of Acid Orange 7 dye from synthetic wastewater using different methods were investigated. Also, adsorption isotherms for MgO nanoparticles and kinetics for UV radiation were investigated. Results: The optimum HRT was 55 minutes while the temperature was not effective in dye removal using the ultrasonic method. Under optimum conditions for UV irradiation method (HRT = 70 minutes, UV power = 170 mW/cm2, and temperature = 10˚C), 58% of the dye was removed. However, under optimum conditions for MgO nanoparticles method (HRT = 15 minutes, temperature = 20˚C, and ratio of MgO nanoparticles to the initial dye concentration = 67.2), 82% of the dye was removed. By combining these methods, the dye removal efficiency was significantly increased. The combination of ultrasonic method and MgO nanoparticles had no significant effect on increasing the dye removal efficiency from wastewater. It was revealed that dye removal using UV radiation can be described by the first-order kinetics. Conclusion: According to the results, UV radiation has a synergistic effect on the dye adsorption process by MgO nanoparticles. Therefore, the combination of these methods can be effective for the removal of dye from wastewater. Keywords: Azo compounds, Ultraviolet rays, Ultrasonic method, Nanoparticles, Waste water, Kinetic

    Effect of various pretreatment methods on sugar and ethanol production from cellulosic water hyacinth

    Get PDF
    Effects of acid, alkali, ionic liquid (IL), and microwave-alkali pretreatments on cellulosic water hyacinth (WH) were investigated based on the total reducing sugars (TRS) and ethanol production. For the first time, IL pretreatment with (1-Ethyl-3-methylimidazolium acetate ([EMIM][Ac]) was used for WH, and the efficiency was compared with the other methods. Cellulase and Saccharomyces cerevisiae were fermented together for 72 h. Based on the results, all pretreatment methods effectively increased the sugar content as well as the ethanol yield. Untreated WH had 25 ± 1.5 mg/g of TRS, which was increased to 157 ± 8.2 mg/g, 95 ± 3.1 mg/g, 51 ± 4.2 mg/g, and 45 ± 2.6 mg/g via alkali, microwave-alkali, acid, and IL pretreatments, respectively. The highest TRS level of 402 mg/g was obtained in 24 h and 6.2 ± 0.4 g/L of ethanol in 48 h of fermentation with the alkali-treated WH. The ethanol production was followed by other treatment methods of WH in the order of microwave-alkali, acid, and IL. The results indicated that the ethanol production from WH was related to the type of pretreatment as well as the TRS production

    Oyster Shell Powder, Zeolite and Red Mud as Binders for Immobilising Toxic Metals in Fine Granular Contaminated Soils (from Industrial Zones in South Korea)

    No full text
    Low-cost absorbent materials have elicited the attention of researchers as binders for the stabilisation/solidification technique. As, there is a no comprehensive study, the authors of this paper investigated the performance of Oyster shell powder (OS), zeolite (Z), and red mud (RM) in stabilising heavy metals in three types of heavy metal-contaminated soils by using toxicity characteristic leaching procedure (TCLP). Samples were collected from surroundings of an abandoned metal mine site and from military service zone. Furthermore, a Pb-contaminated soil was artificially prepared to evaluate each binder (100× regulatory level for Pb). OS bound approximately 82% of Pb and 78% of Cu in real cases scenario. While Z was highly effective in stabilizing Pb in highly polluted artificial soil (>50% of Pb) at lower dosages than OS and RM, it was not effective in stabilising those metals in the soils obtained from the contaminated sites. RM did not perform consistently stabilising toxic metals in soils from contaminated sites, but it demonstrated a remarkable Pb-immobilisation under dosages over than 5% in the artificial soil. Further, authors observed that OS removal efficiency reached up to 94% after 10 days. The results suggest that OS is the best low-cost adsorbent material to stabilize soils contaminated with toxic metals considered in the study

    Dynamic Shear Degradation of Geosynthetic–Soil Interface in Waste Landfill Sites

    No full text
    Geosynthetics and soil particles inevitably come into contact, resulting in a geosynthetic–soil interface. The discontinuity of the materials at the interface causes an intricate shear response, especially under dynamic loads. In the present study, the effects of chemical aggressors of the leachate from a waste landfill site on the cyclic shear behaviors of a geosynthetic–soil interface were investigated. The Multi-Purpose Interface Apparatus (M-PIA) that can simulate cyclic simple shear conditions was utilized, and 72 sets of cyclic simple shear tests were conducted. The Disturbed State Concept (DSC) was employed to quantitatively estimate the shear stress degradation. As a result, new disturbance functions and parameters that represent the characteristics of the dynamic shear degradation at the interface were evaluated. Additionally, a numerical back-prediction was performed to verify the accuracy and applicability of the DSC parameters. Numerical interpolation procedures were suggested and enabled to reproduce the degradation successfully. Consequently, a general methodology was established to estimate the cyclic shear stress degradation of the geosynthetic–soil interface in consideration of chemical effects

    Facemasks: A Looming Microplastic Crisis

    No full text
    Single-use disposable facemasks have been used as a preventive measure against the ongoing COVID-19 pandemic. However, many researchers have found evidence that these facemasks are being dumped into lakes, rivers, and open garbage dumps. Facemasks have the potential of releasing microplastic fibers into the environment; a phenomenon that has been poorly investigated. Moreover, microplastic fibers composed of plastics have the potential of affecting the flora and fauna of many ecosystems. In this preliminary study, we investigate how many microplastic fibers had been released to the water by KF-AD, KF94, surgical, and FFP1 standard facemasks, which are the most widely available facemask standards in South Korea. The waterbody in our research was mechanically agitated for 24, 48, and 72 h. Findings showed that most of the layers of facemasks are composed of polypropylene. The surgical and KF94 standard facemasks released the highest number of microplastic fibers. Furthermore, under our research conditions, a single facemask can release at least 47 microplastic fibers per day (e.g., KF-AD standard mask), which can lead to the release of at least 1381 million microplastic fibers per day in total in South Korea if 70% of the urban population uses a single mask every day. Moreover, the released microplastic fibers significantly increased when the agitation time extended from 24 to 48 h. This finding suggests that the number of released microplastic fibers is likely to increase drastically

    Swelling Capacity and Hydraulic Conductivity of Polymer-Modified Bentonite under Saline Water Conditions

    No full text
    Bentonite is widely used as a waterproof material in civil engineering. The swelling capacity and impermeability will be reduced in saline water conditions. A polymer-modified bentonite was used in this study, and the swelling characteristic and hydraulic conductivity in saline water were investigated. Results show that: the modified bentonite (MB) has good swelling characteristics and low permeability in saline water conditions; the unload swelling strain of MB in saline water conditions increased with rising swelling time; the final unload swelling strain of MB decreased with the increase of vertical pressure and increased with increasing initial dry density; and, as the swelling time increased, the swelling pressure increased rapidly at first and then decreased. Based on experimental results, this study obtained a linear relationship between the ratio of time to unload swelling strain and swelling time, a formula for load swelling strain that was related to initial dry density and vertical pressure, a linear relationship between the ratio of time to swelling pressure and swelling time, and an exponential relationship between swelling pressure and initial dry density. The MB can be used as a waterproof material in seepage-prone applications under saline environmental conditions in civil engineering works

    Application of ZnO-Nd Nano-Photocatalyst for the Reactive Red 198 Dye Decolorization in the Falling-Film Photocatalytic Reactor

    No full text
    A large amount of Reactive red 198 (RR198) is released yearly into the environment. RR198 is toxic for human and aquatic creatures; therefore, it should be removed from wastewater before releasing into the environment. In this study, the nano ZnO-Nd -photo-catalyst for the first time was synthesized by the combustion method. First, the physical characteristics of the generated nano photocatalyst were evaluated using FESEM, XRD, Bandgap calculation, and FTIR analysis. Then, the ZnO-Nd nano-photocatalyst was suspended into the contaminated water with RR198 dye in a falling-film photocatalytic reactor. The effects of parameters such as the amount of H2O2, catalyst dose, pH, and initial concentration of dye were investigated during the experiments. Finally, the decolorization process with the falling-film photocatalytic reactor was optimized using response surface methodology (RSM). The physical characteristics showed that the average particle size of the synthesized ZnO-Nd was 40 nm. Doping ZnO with Nd reduced the photocatalyst energy bandgap by 14%. The results indicated that the optimum amount of catalyst dose and pH level was 0.1 g/L and 5, respectively. The simultaneous usage of H2O2 and ZnO-Nd with an H2O2/dye ratio of two increased dye removal performance by 90%. The results demonstrated that the developed equations can be applied to predict the performance of the falling-film photoreactor. This study showed that using the nano ZnO-Nd photocatalyst in a falling-film photocatalytic reactor under optimum operating conditions is an appropriate way to remove RR198 from water

    Red Mud-Amended Soil as Highly Adsorptive Hybrid-Fill Materials for Controlling Heavy Metal Sewage Seepage in Industrial Zone

    No full text
    With the rapid development of urbanization, the problem of environmental pollution is becoming more and more serious. As a major pollutant, heavy metals have caused serious contamination in soil and groundwater. In order to prevent the diffusion of heavy metals in the soil from industrial sewage, the concept of hybrid-fill layer construction improved by red mud was proposed in this study. This study examines the adsorption capacities of lead and zinc ions and engineering characteristics on red mud-amended soils by direct shear, permeability, adsorption, desorption batch and column tests. Two mixing methods, full particle size displacement mixing and partial particle size displacement mixing, were adopted. The results showed that red mud effectively increased the adsorption capacity of soil to heavy metal ions, and the desorption rate of ions after adsorption was less than 3%, which had good anti-desorption ability. The optimum content of red mud in hybrid-fill material can be determined as 20%. The direct shear test showed that the internal friction angle of hybrid-fill material was 38.9°, and the cohesive force was 30.3 kPa, which met the engineering strength requirements of foundation materials. Based on the test results, red mud can be used as a barrier material to prevent heavy metal contamination in industrial sewage from diffusion, which controls not only heavy metal contamination but also consumes industrial by-products

    Development on the Technology for Offshore Waste Final Disposal in S. Korea

    No full text
    The purpose of this research is to develop technology for offshore waste final disposal. The research results include many core element parts such as establishment of master plan on infrastructure development for offshore waste disposal landfill; the establishment of legal system and code and standard or guidelines related to the offshore waste final disposal; the development of construction technologies of modular revetment structure and performance-enhancing technology for containment system; supervisory control and data acquisition (SCADA) system for offshore final disposal facility and soil/water quality improvement techniques in offshore disposal facility. Some other contributions are expected to collaborate includes: legal and institutional infrastructure construction to create the marine space projects based on the offshore final disposal facility. Additionally, in this paper, the securement of related element technology for environmental-friendly offshore waste disposal facility was discussed. At the same time, new marine industry and related jobs through the development of business model were created.N

    Metabolome and transcriptome analyses of plants grown in naturally attenuated soil after hydrogen fluoride exposure

    No full text
    © 2022 The AuthorsAccidental chemical leaks and illegal chemical discharges are a global environmental issue. In 2012, a hydrogen fluoride leak in Gumi, South Korea, killed several people and contaminated the environment. This leak also led to a significant decline in crop yield, even after the soil concentration of hydrogen fluoride decreased to below the standard level following natural attenuation. To determine the cause of this decreased plant productivity, we designed direct and indirect exposure tests by evaluating the metabolome, transcriptome, and phenome of the plants. In an indirect exposure test, soil metabolomics revealed downregulation of metabolites in vitamin B6, lipopolysaccharide, osmolyte, and exopolysaccharide metabolism. Next-generation sequencing of the plants showed that ABR1 and DREB1A were overexpressed in response to stress. Plant metabolomics demonstrated upregulation of folate biosynthesis and nicotinate and nicotinamide metabolism associated with detoxification of reactive oxygen species. These results demonstrate impaired metabolism of soil microbes and plants even after natural attenuation of hydrogen fluoride in soil. The novel chemical exposure testing used in this study can be applied to identify hidden damage to organisms after natural attenuation of chemicals in soil, as well as biomarkers for explaining the decline in yield of plants grown in soil near pollutant-emitting industrial facilities.N
    corecore