80 research outputs found

    A Three-dimensional Finger Motion Measurement System of a Thumb and an Index Finger Without a Calibration Process

    Get PDF
    Various wearable systems have been investigated to measure hand motion, but some challenges remain. Many systems require a calibration process to map sensor signals to actual finger joint angles by the principle of measuring the length change of the finger, or bending sensors. Also, few studies have investigated how to measure thumb motion accurately using the wearable systems. This paper proposes an exoskeleton system with linear Hall sensors to measure three-dimensional hand motion without a calibration process. The calibration process is avoided by measuring finger joint angles through an absolute rotation measurement. A new wearing method with lower parts underneath the hand joints and rubber bands is proposed to fix the structure to the hand and adapt it for various hand sizes. As the thumb has a complex biomechanical feature at carpometacarpal (CMC) joint, a new measuring method of the CMC joint is proposed to directly calculate the orientation of the metacarpal. The prototype of the thumb and index finger was manufactured, and the performance was verified experimentally by using an optical motion capture system

    Effect of Applied Orthorhombic Lattice Distortion on the Antiferromagnetic Phase of CeAuSb2_2

    Full text link
    We study the response of the antiferromagnetism of CeAuSb2_2 to orthorhombic lattice distortion applied through in-plane uniaxial pressure. The response to pressure applied along a 110\langle 110 \rangle lattice direction shows a first-order transition at zero pressure, which shows that the magnetic order lifts the (110)/(11ˉ0)(110)/(1\bar{1}0) symmetry of the unstressed lattice. Sufficient 100\langle 100 \rangle pressure appears to rotate the principal axes of the order from 110\langle 110 \rangle to 100\langle 100 \rangle. At low 100\langle 100 \rangle pressure, the transition at TNT_N is weakly first-order, however it becomes continuous above a threshold 100\langle 100 \rangle pressure. We discuss the possibility that this behavior is driven by order parameter fluctuations, with the restoration of a continuous transition a result of reducing the point-group symmetry of the lattice.Comment: 6 pages, 7 figure

    A soft sensor-based three-dimensional (3-D) finger motion measurement system

    Get PDF
    In this study, a soft sensor-based three-dimensional (3-D) finger motion measurement system is proposed. The sensors, made of the soft material Ecoflex, comprise embedded microchannels filled with a conductive liquid metal (EGaln). The superior elasticity, light weight, and sensitivity of soft sensors allows them to be embedded in environments in which conventional sensors cannot. Complicated finger joints, such as the carpometacarpal (CMC) joint of the thumb are modeled to specify the location of the sensors. Algorithms to decouple the signals from soft sensors are proposed to extract the pure flexion, extension, abduction, and adduction joint angles. The performance of the proposed system and algorithms are verified by comparison with a camera-based motion capture system.ope

    Effect of uniaxial stress on the magnetic phases of CeAuSb2_2

    Full text link
    We present results of measurements of resistivity of \CAS{} under the combination of cc-axis magnetic field and in-plane uniaxial stress. In unstressed \CAS{} there are two magnetic phases. The low-field A phase is a single-component spin-density wave (SDW), with q=(η,±η,1/2)\mathbf{q} = (\eta, \pm \eta, 1/2), and the high-field B phase consists of microscopically coexisting (η,η,1/2)(\eta, \eta, 1/2) and (η,η,1/2)(\eta, -\eta, 1/2) spin-density waves. Pressure along a 100\langle 100 \rangle lattice direction is a transverse field to both of these phases, and so initially has little effect, however eventually induces new low- and high-field phases in which the principal axes of the SDW components appear to have rotated to the 100\langle 100 \rangle directions. Under this strong 100\langle 100 \rangle compression, the field evolution of the resistivity is much smoother than at zero strain: In zero strain, there is a strong first-order transition, while under strong 100\langle 100 \rangle it becomes much broader. We hypothesize that this is a consequence of the uniaxial stress lifting the degeneracy between the (100) and (010) directions.Comment: 8 pages, 7 figure

    Pediatric Korean Triage and Acuity Scale

    Get PDF
    Symptoms and signs of childhood disease are different according to age. Initial assessment process in emergency department should consider a broad presentation of illness and injuries of pediatric patients. In 2012, the Korean Society of Emergency Medicine developed the Korean Triage and Acuity Scale (KTAS) by expert consultation including a survey to emergency physicians, nurses, and emergency medical technicians based on the Canadian Triage and Acuity Scale. KTAS research group performed the analysis of distribution of pediatric populations by KTAS classification in 8 hospitals and showed the correlation with the disposition results with KTAS scores in 2014. KTAS could improve the patient safety by the real-time scoring of severity in pediatric patients. KTAS would generate important data for distributing patients to the less crowded emergency departments in near future

    Anisotropic Dirac fermions in a Bi square net of SrMnBi2

    Get PDF
    We report the highly anisotropic Dirac fermions in a Bi square net of SrMnBi2, based on a first principle calculation, angle resolved photoemission spectroscopy, and quantum oscillations for high-quality single crystals. We found that the Dirac dispersion is generally induced in the (SrBi)+ layer containing a double-sized Bi square net. In contrast to the commonly observed isotropic Dirac cone, the Dirac cone in SrMnBi2 is highly anisotropic with a large momentum-dependent disparity of Fermi velocities of ~ 8. These findings demonstrate that a Bi square net, a common building block of various layered pnictides, provide a new platform that hosts highly anisotropic Dirac fermions.Comment: 5 pages, 4 figure
    corecore