681 research outputs found

    Homotopy-based training of NeuralODEs for accurate dynamics discovery

    Full text link
    Conceptually, Neural Ordinary Differential Equations (NeuralODEs) pose an attractive way to extract dynamical laws from time series data, as they are natural extensions of the traditional differential equation-based modeling paradigm of the physical sciences. In practice, NeuralODEs display long training times and suboptimal results, especially for longer duration data where they may fail to fit the data altogether. While methods have been proposed to stabilize NeuralODE training, many of these involve placing a strong constraint on the functional form the trained NeuralODE can take that the actual underlying governing equation does not guarantee satisfaction. In this work, we present a novel NeuralODE training algorithm that leverages tools from the chaos and mathematical optimization communities - synchronization and homotopy optimization - for a breakthrough in tackling the NeuralODE training obstacle. We demonstrate architectural changes are unnecessary for effective NeuralODE training. Compared to the conventional training methods, our algorithm achieves drastically lower loss values without any changes to the model architectures. Experiments on both simulated and real systems with complex temporal behaviors demonstrate NeuralODEs trained with our algorithm are able to accurately capture true long term behaviors and correctly extrapolate into the future.Comment: 12 pages, 6 figures, submitted to ICLR202

    Development of a Chaff Dispense Program for Target Tracking Radar Deception

    Get PDF
    This study aims to develop an appropriate chaff dispensing program to deceive the target tracking radar (TTR) effectively. Chaff is a countermeasure commonly used by fighter aircraft to deceive TTR. However, there has been a lack of methodology for calculating chaff dispense programs that take into account the specific characteristics of the fighter, chaff, and TTR. This study proposes a methodology that considers these variables to calculate chaff dispense programs and addresses this gap. The proposed method is demonstrated through TESS engagement, which shows its effectiveness in various engagement situations

    Development of a Chaff Dispense Program for Target Tracking Radar Deception

    Get PDF
    This study aims to develop an appropriate chaff dispensing program to deceive the target tracking radar (TTR) effectively. Chaff is a countermeasure commonly used by fighter aircraft to deceive TTR. However, there has been a lack of methodology for calculating chaff dispense programs that take into account the specific characteristics of the fighter, chaff, and TTR. This study proposes a methodology that considers these variables to calculate chaff dispense programs and addresses this gap. The proposed method is demonstrated through TESS engagement, which shows its effectiveness in various engagement situations

    Challenges and Trends of Machine Learning in the Myoelectric Control System for Upper Limb Exoskeletons and Exosuits

    Get PDF
    Myoelectric control systems as the emerging control strategies for upper limb wearable robots have shown their efficacy and applicability to effectively provide motion assistance and/or restore motor functions in people with impairment or disabilities, as well as augment physical performance in able-bodied individuals. In myoelectric control, electromyographic (EMG) signals from muscles are utilized, improving adaptability and human-robot interactions during various motion tasks. Machine learning has been widely applied in myoelectric control systems due to its advantages in detecting and classifying various human motions and motion intentions. This chapter illustrates the challenges and trends in recent machine learning algorithms implemented on myoelectric control systems designed for upper limb wearable robots, and highlights the key focus areas for future research directions. Different modalities of recent machine learning-based myoelectric control systems are described in detail, and their advantages and disadvantages are summarized. Furthermore, key design aspects and the type of experiments conducted to validate the efficacy of the proposed myoelectric controllers are explained. Finally, the challenges and limitations of current myoelectric control systems using machine learning algorithms are analyzed, from which future research directions are suggested
    • …
    corecore