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Challenges and Trends of Machine
Learning in the Myoelectric Control
System for Upper Limb
Exoskeletons and Exosuits
Jirui Fu, Zubadiah Al-Mashhadani, Keith Currier,

Al-Muthanna Al-Ani and Joon-Hyuk Park

Abstract

Myoelectric control systems as the emerging control strategies for upper limb
wearable robots have shown their efficacy and applicability to effectively provide
motion assistance and/or restore motor functions in people with impairment or dis-
abilities, as well as augment physical performance in able-bodied individuals. In
myoelectric control, electromyographic (EMG) signals from muscles are utilized,
improving adaptability and human-robot interactions during various motion tasks.
Machine learning has been widely applied in myoelectric control systems due to its
advantages in detecting and classifying various human motions and motion inten-
tions. This chapter illustrates the challenges and trends in recent machine learning
algorithms implemented on myoelectric control systems designed for upper limb
wearable robots, and highlights the key focus areas for future research directions.
Different modalities of recent machine learning-based myoelectric control systems are
described in detail, and their advantages and disadvantages are summarized. Further-
more, key design aspects and the type of experiments conducted to validate the
efficacy of the proposed myoelectric controllers are explained. Finally, the challenges
and limitations of current myoelectric control systems using machine learning
algorithms are analyzed, from which future research directions are suggested.

Keywords: myoelectric control, upper limb exoskeleton, upper limb exosuit, pattern
recognition, machine learning, reinforcement learning

1. Introduction

In the past few decades, the demand for upper limb exoskeletons and exosuits has
grown substantially due to their promising applications across industry, medical and
military sectors. The exoskeletons consists of rigid links and joints attached to the
human body, whereas the exosuits use soft and flexible materials (such as fabric or
soft polymer) to interact with the user’s body [1]. The applications of exoskeletons and
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exosuits include: (i) power augmentation to enhance physical performance or the
capabilities of able-boded individuals during strenuous physical tasks [2], and
(ii) assisting individuals with disabilities in performing activities of daily living
(ADLs) [3].

The exoskeletons and exosuits can be controlled by many different schemes, such
as the kinematics control based on the inertia measurement unit sensor (IMU) or
encoder [4, 5], the force control based on load cell or torque sensor [6, 7], and the
myoelectric control based on the electromyographic sensor (EMG) [8]. Among these
control schemes, the myoelectric control systems have gained increasing attention
over recent years [9–11]. The myoelectric control systems of the upper limb exoskel-
etons and exosuits use surface electromyography (EMG) signals, the electric poten-
tials directly measured from the skeletal muscle as input of the control system for
exoskeletons and exosuits (Figure 1). The surface EMG signals are generated from the
motor unit activation, controlled by the human brain, and regulated by the motor
neurons in the spinal cord. The mechanism for generating surface EMG signals offers
surface EMG signals to detect human movement intention [12]. The critical advantage
of a myoelectric control system over other control systems is its timely detection of
the user’s motion intention leveraging electromechanical delay (EMD); the onset of
motion can be detected about 50–100 ms earlier than the physical motion [13, 14].
Moreover, the exoskeletons and exosuits equip with myoelectric control systems have
a more adaptive and intelligent interface with the users as the exoskeleton and
exosuits can timely and proactively engage assistance through detecting the users’
movement intention [15].

Myoelectric control systems for upper limb exoskeletons and exosuits initially used
on-off/finite state control and proportional control, as described in Refs. [16, 17].
Although these methods are simple and easy to implement, their ability to accommo-
date a wide range of different movements is limited, as noted in Ref. [18]. Conse-
quently, their primary use have been limited to a single joint function such as elbow
flexion/extension or hand grip. To allow for more complex movements across multi-
ple degrees of freedom (DOFs), machine learning (ML) and deep learning (DL)
algorithms have been utilized in the myoelectric control systems. However, the myo-
electric control systems with ML or DL algorithms generally require considerable
computational power, which imposes practical limitations on the portability of exo-
skeletons and exosuits [19]. In recent years, with the advancements in more powerful
and compact embedded computers, myoelectric control systems with ML or DL
algorithms became feasible to implement on upper limb exoskeletons and exosuits.
Compared to the early staged myoelectric control modalities, the ML or DL-based
myoelectric control systems have shown superior performance and better results in
complex, multi-DOF upper limb motions; yet, there still exist challenges and limita-
tions which will be discussed in detail in the subsequent sections.

Given the growing interest in machine learning and deep learning-based myoelec-
tric control systems for upper limb exoskeletons and exosuits, the number of publica-
tions in the relevant field has rapidly increased over the past decade. Therefore, it is
imperative to understand the latest trend and challenges in machine learning and deep
learning-based myoelectric control system for upper limb exoskeletons and exosutis.
A systematic review that provides a comprehensive overview of the myoelectric
control system for upper limb exoskeletons and exosuits [8] was published by the
authors. However, the focus of that review was not specifically machine learning and
deep learning-based myoelectric control system of upper limb exoskeletons and
exosuits, and it does not discuss current challenges and future directions. This chapter
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is designed to share the extensive review of the machine learning-based myoelectric
control system for upper limb exoskeletons and exosuits, particularly from scientific
articles published between 2011 and 2023. The identified challenges in implementing
machine learning algorithms in the myoelectric control system and future directions
are suggested. In the following section, the process of machine learning-based myo-
electric control system is summarized (Section 2), and the state-of-the-art implemen-
tation of machine learning algorithms in upper limb exoskeletons and exosuits is
presented (Section 3). Finally, the remaining unaddressed research questions and
tasks are discussed as future research directions (Section 4).

2. The procedure of machine learning-based myoelectric control system

Similar to any other types of myoelectric control systems, machine learning-based
myoelectric control systems include key procedural steps: signal acquisition, pre-
processing, feature extraction, and motion intention detection through the trained
machine learning model (Figure 2). In this section, the process of a machine learning-
based myoelectric control system will be presented in detail.

2.1 Data acquisition and signal processing

The acquisition of the EMG signal is critical to the myoelectric control system of
the upper limb exoskeleton, as the accuracy of the myoelectric controller primarily
depends on the quality of the EMG signal. It is, therefore, important to acquire quality
and accurate EMG signals. Three essential components of EMG data acquisition sys-
tems are the electrodes for EMG, the sampling rate and signal filtering.

Figure 1.
The generation of electromyography signal and the workflow of myoelectric control systems on upper limb
exoskeletons and exosuits.
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• EMG electrodes – The electrodes of the EMG sensors include surface and
intramuscular, in which the surface EMG electrode uses an insulative sticker to
place the electrode on the skin overlying a muscle to detect the electrical activity
of the muscle [20]. On the other hand, the intramuscular EMG electrodes utilize
the needles or wires that are inserted into the muscles [21]. Compared to the
surface electrode, the intramuscular EMG electrodes can minimize the crosstalk
from neighboring muscle segments; however, the operation of intramuscular
EMG electrodes requires trained medical expertise, and it is more difficult to use
in the research environment. Thus, the surface EMGs are more commonly and
widely used in myoelectric control systems of upper limb exoskeletons and
exosuits.

• Sampling rate – Because the acquisition of EMG signal involves converting the
analog signal (voltage generated by muscular activation) to the digital signal
(EMG signal used in the myoelectric control systems), which a computer can
process, selecting an optimal sampling rate is critical to avoid under-sampling or
oversampling. The choice of sampling rate varies between muscle segments. For
example, [22] investigates the selection of sampling rate for EMG, and [23]
explores the effect of sampling rate for machine learning-based myoelectric
control system accuracy

• Filtering and rectification – The acquisition of surface EMG measures a
combination of the activation of all recruited motor units within the muscle.
Therefore, the collected surface EMG signal contains the drift and artifacts which
affect the accuracy of the surface EMG signal. The Butterworth filters have been
widely used to remove the drift and artifact from collected surface EMG signals.
Usually, filtering the raw surface EMG signal includes using a high-pass
Butterworth filter to remove the drift and artifact from the raw surface EMG

Figure 2.
The process of machine learning based myoelectric control system.

4

Multi-Robot Systems



signal, then using a low-pass Butterworth filter to acquire an envelope indicating
the magnitude of the surface EMG signal as it changes over time. However, the
selection of the order and cut-off frequency of the Butterworth filter could be
optimized for different muscle segments; for example, [24] presents the filter
selection for surface EMG signal to remove the drift and artifacts. After high and
low pass (or band pass) filters, the EMG signals need full wave rectification then
a low pass filter for further processing and feature extraction.

2.2 Feature extraction

The pre-processed surface EMG signal is presented as a time sequence that
includes a large number of randomness. Therefore, directly feeding the pre-processed
surface EMG signal to the machine learning model is impractical. To feed the pre-
processed surface EMG signal to the machine learning model, the sequence of pre-
processed surface EMG signals must be mapped into a smaller dimension vector called
a feature vector [25]. The process of extracting feature vectors from the pre-processed
surface EMG signal is called feature extraction. In applying a myoelectric control
system for upper limb exoskeletons and exosuits, feature extraction includes two
types of methods: feature selection and dimensionality reduction algorithms.

• Feature selection – The feature selection uses the statistic formulas to convert the
pre-processed surface EMG signal to low-dimensional feature vectors. The
feature selection methods are categorized as time-domain and frequency-domain
features. However, according to the literature review, only the time-domain
features are utilized in the myoelectric control systems for upper limb
exoskeletons and exosuits because the time-domain features are computationally
simple compared to the frequency-domain features. The time-domain features
use the time sequence of surface EMG signal, and there are many types of
time-domain features used such as integrated EMG (IEMG), mean absolute
value (MAV), root mean square (RMS) and auto-regressive coefficient (AR).
Among these, the root mean square and auto-regressive coefficient features are
the most widely used time-domain EMG features in myoelectric control systems
for upper limb exoskeletons and exosuits, according to our literature survey.
Because each feature has different statistical meanings and implications, the
effect of selecting different features for the machine learning model could vary.
For example, [26] investigated the effect of different features on hand motion
classification.

• Dimensionality reduction – Similar to the statistical features, the dimensionality
reduction also maps the pre-processed surface EMG signal to the low-
dimensional feature vectors. However, the statistical formulas used in feature
selection do not change the data, while the dimensionality reduction maps the
data to the lower dimension. The dimensionality reduction uses linear or
nonlinear algorithms to map the data to a low dimension, such as the Principle
Component Analysis (PCA) and Linear Discriminate Analysis (LDA). In [27], the
performance of dimensionality reduction in classifying the object’s weight using a
machine learning model from the surface EMG signal was studied. The
dimensionality reduction algorithms are less frequently used in myoelectric
control systems for upper limb exoskeletons and exosuits due to their comparably
heavy computational process as compared to feature selection process.
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3. Taxonomy of machine learning-based myoelectric control systems

The previous section presents an overview of the process of machine learning-
based myoelectric control system. This section will summarize the machine learning
algorithms used in the reviewed research articles. These algorithms are categorized
into three: (1) classification-based models, which are used to detect the type of
movement from the surface EMG features, (2) regression-based models, which can
make a continuous prediction of the human subject’s joint kinematics or torques, and
(3) the reinforcement learning models which optimize the model through the inter-
action of human subjects and machine learning model. As shown in Figure 3, among
the included research articles, the regression-based models and classification models
are the most widely used modalities in the machine learning-based myoelectric con-
trol systems, while not much work has been done in the implementation and valida-
tion of reinforcement learning models.

3.1 Classification-based myoelectric control system

The classification-based Myoelectric Control System uses the classification model
to detect the movement from the statistical features of the human subject’s surface
EMG signal. In the classification-based myoelectric control, the labels are pre-defined
by the human subjects, which includes types of upper limb movement such as elbow
flexion/extension (diversified labels), and the onset of upper limb movement such as
in motion or still (binary labels). To train the classification models, surface EMG data
corresponding to the labeled motion must be collected from human subject. Then, the
classification model can be trained by various machine learning algorithms such as the
Support Vector Machine (SVM) [28], Linear Discriminant Analysis (LDA) [29], K-
nearest neighbors (KNN) [30], etc. According to our literature review, the support
vector machine algorithm is the most popular choice in the classification models of
machine learning-based myoelectric control systems. Compared to other machine
learning algorithms, the support vector machine algorithm provides better computa-
tional efficiency that makes it feasible to run on embedded computers than other
types of machine learning algorithms. The support vector machine algorithm can train
classification models with either diversified or binary labels. For example, [31] trained

Figure 3.
Different types of machine learning models used in the reviewed research articles.
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a SVM model to classify if the human subject’s finger is in motion or not. In [31], a
classification-based myoelectric control system trained by the SVM algorithm was
proposed for a (#DOF) finger exoskeleton using binary labels. Additionally, [32]
compared the accuracy of the classification-based myoelectric control systems for a
hand exoskeleton trained by different machine learning algorithms, i.e., SVM, artifi-
cial neural network with backpropagation algorithm (ANN), and K-nearest neighbors
(KNN). The classification model in [32] includes five labels that correspond to five
different types of hand motion, then used the classification output to trigger the
predefined assistive mode in the hand exoskeleton. According to [32], the classifica-
tion model trained by SVM showed the best accuracy among those compared. More-
over, Cheon et al. proposed a myoelectric interface based on the musculotendinous
junctions (MTJs) of the flexor digitorum superficialis (FDS) for reliable control of a
robotic glove with a single EMG sensor by identifying power grasp intentions [33] and
the support vector machine (SVM) algorithm was used to optimize the classification
model. Other machine learning algorithms have also been utilized to train the classi-
fication model in the machine learning-based myoelectric control systems. For exam-
ple, [34] utilized the MCLPBoost – a type of decision-tree algorithm to classify the
flexion and extension of elbow and wrist joints. Compared to the SVM algorithm, they
showed that the MCLPBoost had better robustness against the noised training data.

Many research articles reviewed targeted to improve the performance of classifi-
cation models. For instance, [16, 35] studied the impact of feature extraction on the
accuracy of classification model where two types of feature extraction techniques
were explored. The type 1 feature extraction technique converted the single-channel
EMG signal to 14 different statistical features; the type 2 feature extraction technique
converted five channel EMG signal to a single statistical feature. Both type 1 and 2
feature extraction techniques were designed for the same upper limb exoskeleton and
the classification models were trained by the same machine learning algorithm. The
experimental result indicated the type 1 feature extraction technique outperformed
the type 2 feature extraction from which they suggested that when training the
classification-based myoelectric control systems, higher dimensional training set gives
better performance. Moreover, [36, 37] implemented the sensor fusion method by
combining the EMG and electroencephalography (EEG) signal to improve the accu-
racy of the classification-based myoelectric control system trained by the artificial
neural network with a backpropagation algorithm. Additionally, to prevent the
misclassification caused by the unfiltered noise in EMG signals such as crosstalk and
motion artifacts, [38] utilized a threshold method in which the amplitude of filtered
EMG signal must be greater than a specific value to be an input to the classification
model. Twardowski et al. used the machine learning algorithm to convert the motor
unit firings from the sEMG signals into biomechanically informed signals that drive
the actuation [39]. The resulting signal provides a smoother control scheme with less
delay versus using the MAV and RMS response to modulate the actuation. The EMG
signal in the study [31, 32, 34, 39] used the root mean square (RMS) as statistical
features, while [40] used integrated EMG (iEMG) to train the classification model.
Compared to the RMS feature, the iEMG feature requires less computational power.
The classification model presented in [40] plotted the output data onto a 2D Cartesian
plane that can be distinguished in real-time using a Point-in Polygon algorithm com-
monly used in computer graphics. This algorithm determines whether the sample in
the plane belongs in or out of a given polygonal area which is the area of each given
label. Among the tested classifiers, this method provided the highest classification
accuracy (94%) when classifying hand grasp motions.
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The abovementioned articles utilized the statistical features of EMG data as input
for the classification-based myoelectric control systems. However, the raw EMG sig-
nal can also be used as input for the classification-based myoelectric control system, as
demonstrated by [41], which successfully implemented a vision transformer model to
classify two datasets using raw multichannel EMG data. The transformer model is
commonly used in natural language processing, but the encoder-decoder network can
be applied to determine the underlying characteristics of the input data without
manual feature extraction or signal pre-processing. The resulting model achieved a
higher classification accuracy versus a convolution neural network model and an
LSTM network.

3.2 Regression-based myoelectric control system

The regression-based myoelectric control system implements regression analysis
techniques. In statistics, regression analysis estimates the relationship between a
dependent variable (output of regression-based myoelectric control system) and an
independent variable (usually the EMG features in the regression-based myoelectric
control system) by using a regression model. Compared to the classification-based
myoelectric control system, the regression model can output continuous variables
such as joint torque and joint angle. The regression model can be trained by various
machine learning algorithms. However, there are two regression models found in our
literature review, artificial neural network with backpropagation algorithm and
Kalman Filters.

Among the research articles reviewed, the artificial neural network was the most
widely used method to train the regression model. For example, [42] implemented a
regression model to estimate the joint angle from the statistical feature of the human
subject’s EMG signal. The regression model is trained by artificial neural network with
a back propagation algorithm, and the results showed that the regression model could
accurately estimate the joint angle of human. Additionally, the regression-based myo-
electric control systems have also been widely used in the bilateral training of hand
exoskeletons. Because the bilateral training focuses on using the unimpaired hand to
help the impaired hand restore its motor control capability, the myoelectric control
scheme must accurately estimate the joint kinematics or joint torque of the
unimpaired hand which complies with the characteristics of regression-based myo-
electric control systems. For example, [38, 43–48] implemented the regression model
to estimate the joint angle or joint torque from the unimpaired hand to help the
impaired hand to restore its motor control capability. On the other hand, Kalman
Filter is another approach used in the regression model for myoelectric control of
upper limb wearable robots. Compared to the artificial neural network with
backpropagation method, Kalman filter does not need much time and extensive
datasets to train the model. Moreover, tuning Kalman filter requires less computa-
tional power than tuning the artificial neural network which makes it easier to run on
an embedded computer. The studies [49, 50] utilized the Kalman filter to compute the
joint torque based on the EMG signal whose regression models offered better accuracy
when compared to the regression model trained by artificial neural network with
backpropagation algorithm. Another method proposed by Kopke et al. used 6 DOF
loadcells and EMG sensors to acquire the training data and the linear discriminate
analysis (LDA) algorithm to train the regression model [51]. The experiment demon-
strated a 92% accuracy in estimating the joint torque of human subjects’ shoulder and
elbow joint.
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Furthermore, some studies focused on improving the accuracy of regression
models. For example, Sierotowice et al. [52] utilized a ridge regression algorithm and a
feature selection algorithm called Random Fourier Features to improve the accuracy
of the regression model to estimate the hand-grasping force. The regression algorithm
of the controller achieved a higher classification accuracy when determining the target
forces versus the random Fourier features algorithm (80% versus 73%, respectively).
Moreover, the work by Meattini et al. used a soft dynamic time warping (soft-DTW)
method to improve the accuracy of the neural network based regression model [53]
and the result of this study shows comparable performance to the conventional neural
network regression model.

3.3 Reinforcement learning based myoelectric control system

The reinforcement learning algorithm is another type of machine learning algo-
rithm which are used as a machine learning based myoelectric control system. Differ-
ent from the classification and regression models, the reinforcement learning model
trains an agent to choose the optimal action under a specific state in an environment.
The process of reinforcement learning can be divided into several steps; in each step,
the smart agent executes an action based on a specific state and receive a reward signal
as feedback. The objective of the smart agent is to find the optimal action to maximize
the accumulative reward.

Compared to the other two types of machine learning myoelectric control systems,
only a few included research literature implemented the reinforcement learning algo-
rithm. Hamaya et al. [54] utilized an elbow exoskeleton and applied the Probabilistic
Inference for Learning Control (PILCO) reinforcement learning algorithm. The state
vector included elbow joint kinematics and EMG signals, and the reward was based on
the deviation between the intended and actual trajectory. PILCO employed the
Gaussian process to learn the probabilistic dynamic model of the interface between
the human and the exoskeleton. The learned model was then used to assess the control
policy, which was optimized using the policy gradient method [55]. This approach
proved to be more efficient than other machine learning myoelectric control systems,
leading to a shorter training period.

4. Discussion

This section outlines several research questions and tasks that need to be addressed
in future studies, including the robustness of machine learning-based myoelectric
control system, the incorporation of safety requirements in machine learning-based
myoelectric control systems, and the clinical assessment of assistive and rehabilitative
upper limb exoskeletons and exosuits with machine learning-based myoelectric con-
trol systems. These research questions point out crucial barriers to the effective use of
machine learning-based myoelectric control systems in upper limb exoskeletons and
exosuits which warrant further investigations.

4.1 Robustness of machine learning-based myoelectric control systems

The myoelectric control system’s ability to withstand disturbance from both inter-
nal and external sources within the environment, as measured by its resistance to
electromyography signals [56], is referred to as its robustness. This type of
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disturbance is typically caused by muscle fatigue [57], electrode displacement [58],
and changes in EMG patterns over time [59]. Over the past decade, there has been a
significant increase in studies employing machine learning-based myoelectric control
systems, which have shown promising results in preliminary or pilot testing in labo-
ratory settings. However, none of these systems have explored methods to enhance
their robustness. To bridge the gap between experimental research and commercial or
clinical applications, machine learning-based myoelectric control systems should
concentrate on creating a precise control scheme under well-controlled laboratory
conditions while also improving robustness in real-world scenarios.

The review of research articles that utilized machine learning-based myoelectric
control systems found that these systems face common issues, such as varying char-
acteristics of sEMG signals in different physiological conditions, noise/artifacts, mus-
cle fatigue that causes variance in sEMG signals, and electrode shift during or between
sessions. However, none of the studies focused mainly on addressing these issues.
Existing studies have investigated these issues in the context of myoelectric control of
prosthetics, teleoperate robotic arms, and pattern recognition of sEMG signals.
Potential approaches to improve the robustness of machine learning-based myoelec-
tric control systems include using more efficient features, reducing the impact of
EMG electrode shift, and improving the data collection protocol or signal processing
method. However, these methods have not been studied in the included research
articles. Therefore, further investigations are needed to evaluate the performance of
machine learning-based myoelectric control systems with these robustness-improving
methods and their performance on the upper limb exoskeleton.

In future studies, it is suggested to investigate the performance of upper limb
exoskeletons with machine learning-based myoelectric control systems using different
time-domain and frequency-domain features. The selection of EMG features should
be expanded to account for larger time-domain and frequency-domain features, and
the performance of the human-exoskeleton system with the improved myoelectric
control system should be evaluated. Additionally, during laboratory research, the
causes of error, such as EMG electrode shift and muscle fatigue that could affect the
robustness of machine learning-based myoelectric control systems in clinical applica-
tions, should be emulated. Novel training protocols should also be investigated
because using the EMG signal collected within a short period to train the machine
learning-based myoelectric control system will affect its robustness. Therefore, future
studies of machine learning myoelectric control systems of upper limb exoskeletons
should focus on developing novel control schemes, investigating effective training
protocols, and evaluating them on the upper limb exoskeletons. In the research arti-
cles reviewed, there were several common issues that were reported. These issues
included differences in the characteristics of EMG signals across various physiological
conditions, the presence of noise and artifacts, muscle fatigue leading to variations in
EMG signals, and electrode movement during or between sessions. However, none of
the included research articles specifically addressed these issues by focusing on
improving the robustness of machine learning-based myoelectric control systems.

Furthermore, one of our studies explored the implementation of a variational
autoencoder to improve the robustness of the classification model in using the EMG
signal to recognize the motion performed by the human subject. An autoencoder is a
neural network model that is trained to compress and uncompress inputted data while
reducing the error between the input data and the reconstructed output data as much
as possible [60]. The restrictive architecture of the autoencoder creates a model that
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can act as a dimensionality reduction method to perform unsupervised feature learn-
ing. Implementing autoencoder networks or more advanced encoder-decoder net-
works can further reduce the complexity of input myoelectric signal data or
multimodal sensor data at the compressed latent layer while learning the hidden
characteristics that define the system. Autoencoder networks can effectively denoise
incoming EMG signal data [61], and the encoder-decoder model framework can be
reused using a transfer learning-based model approach [56]. Once the model is trained
offline using collected experimental data, the myoelectric control scheme can be
readily implemented with little calibration time for the end user. Autoencoder models
have already been implemented in research to improve the pattern recognition of
myoelectric control schemes in the presence of electrode shift [62], but more research
is needed to test the viability of using encoder-decoder networks in myoelectric
control schemes.

4.2 Safety requirements in machine learning based myoelectric control systems

The active and powered upper limb exoskeletons and exosuits require high levels
of safety to ensure that they do not pose any risks to human users for assistive or
rehabilitative purposes. Previous research has primarily focused on incorporating
safety measures in the mechanical design of exoskeletons by implementing mechani-
cal stops, rotation limits, and force limits to prevent any excessive range of motion or
force from being applied to the user [3]. However, these mechanisms may not always
guarantee the user’s safety when there are unknown parameter variances, hardware
failures, or actuator malfunctions [63]. Therefore, control strategies that can com-
pensate for various uncertainties and external load disturbances may significantly
enhance user safety when wearing the robotic exoskeleton during tasks and move-
ments. According to state-of-the-art research articles, one potential approach to
improve safety is to apply data fusion techniques to EMG signals, considering their
inherent variability arising from changes in arm posture, electrode repositing, fatigue,
etc. [64]. By fusing EMG data, potential errors in motion estimation can be mini-
mized. In [64], two data-fusing algorithms, Variance Weighted Average (VWA) and
Decentralized Kalman Filter, were presented as potential methods to improve safety
in robotic exoskeletons.

Additionally, other works also utilize the deep reinforcement learning-controlled
neuromusculoskeletal simulator (NMMS) to validate the machine learning-based
myoelectric control system. The neuromusculoskeletal simulation modulates a wide
range of control schemes and parameters to test the efficacy and performance of
different control methods while observing model outcomes, such as muscle force,
joint kinematics and power using EMG signals [65]. Compared to the conventional
control schemes of the NMMS which are broadly classified as forward-type or inverse-
type. The deep reinforcement learning (DRL) based NMMS controller learns the
neuromusculoskeletal system dynamics by interacting with its environment without
the experimental data collected from big samples with varying anthropometrics and
biomechanics characteristics. For example, [66] implemented a lower limb NMMS
with DRL-based locomotion controller to validate a reinforcement learning-based
myoelectric control system for a lower limb orthosis. In this work, a deep reinforce-
ment algorithm called Soft-Actor-Critic (SAC) was used to learn the dynamics of the
lower-limb NMMS and served as its locomotion controller; meanwhile, a myoelectric
control scheme was trained by imitation learning through interacting with the lower-
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limb NMMS. Compared to validating the novel myoelectric control scheme on the
human body, using the RL-based NMMS can guarantee safety while maximumly
emulating the feedback from real human. However, the abovementioned research
only deals with the lower-limb neuromusculoskeletal simulator, while the reinforce-
ment learning-based neuromusculoskeletal simulator for upper limb is still exten-
sively unexplored. To address this gap, one of our recent studies utilized the MyoSuite
– a Mujoco-based neuromusculoskeletal simulation kit [67] – to simulate the flexion/
extension of human’s elbow joint controlled by the deep deterministic policy gradient
algorithms (DDPG) – a variant of deep reinforcement learning algorithms [68]. In
that work, we compared the performance between two types of action spaces – the
PD-based internal model of the central neuron system, and the direct muscular acti-
vation output. The result indicated the PD-based internal model has better learning
performance than the direct muscular activation output. Additionally, we also simu-
lated the proportional myoelectric control [17] in the NMMS to validate its feasibility
in validating the myoelectric control system. However, the result of muscle activation
is different from the result in [17]. Therefore, further studies should focus on making
the NMMS become more human-like.

4.3 Implementation of reinforcement learning algorithms

Only 3 percent of the research articles from our survey utilized the reinforcement
learning algorithms for the machine learning-based myoelectric control system
(Figure 3). However, as a branch of machine learning, reinforcement learning has
some exclusive advantages if implemented in a control system. For example, rein-
forcement learning can inherently reflect how humans learn a skill in the real world,
which is actively exploring the unknown environment and finding the long-term
optimal solutions [69]. More importantly, the reinforcement learning algorithm
can learn the optimal solution without the predefined knowledge about the
dynamics of environment [70] Due to these advantages, an increasing number of
biomechanical studies implemented reinforcement learning, such as using reinforce-
ment learning to control a lower-limb musculoskeletal model for obstacle avoidance
[71], to control a functional electrical stimulation to assist movement [72], and to
control an upper limb prothesis [73]. One literature implemented Probabilistic
Inference for Learning Control Algorithm (PILCO) – a reinforcement learning
algorithm to train a myoelectric control system – on an elbow exoskeleton and
achieved a satisfactory result [54]. However, the PILCO algorithm depends on the
dynamic model of the environment which increases the difficulty of computation
and restricts the usage of trained myoelectric controllers in a single task. Different
from [54], the reinforcement learning algorithm used in [72, 73] does not require
the dynamic model of the environment, which called model-free reinforcement
learning algorithms. The model-free reinforcement learning algorithms have the
advantage of less computational difficulty, and wider applicability. There are many
model-free reinforcement learning algorithms, for example, the Asynchronous
Advantage Actor-Critic (A3C) algorithm [74] which was used to estimate the elbow
joint torque from the surface EMG signal [75]. To explore the application of rein-
forcement learning algorithms in myoelectric control systems, further research is
needed to validate these reinforcement learning algorithms (e.g., deep deterministic
policy gradient (DDPG), proximal policy optimization (PPO), and asynchronous
advantage actor critic (A3C)) used in the field of myoelectric control systems for
upper limb wearable robots.
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5. Conclusion

This chapter shares a review of the recent implementation of machine learning
algorithms in the myoelectric control systems for upper limb exoskeletons and
exosuits. The types of machine learning algorithms used in the myoelectric control
systems include classification model, regression model and reinforcement learning
model. Also, this chapter provides information on the methods, performance, and
limitations of each myoelectric control modality. The machine learning algorithms in
the myoelectric control systems have shown promising outcomes, including improved
human-robot interactions, robot intelligence, and adaptiveness to the user, task and
environment compared to traditional myoelectric control systems that did not use
learning-based controls. Several challenges and limitations are identified which need
to be addressed in future studies related to machine learning -based myoelectric
control system for upper limb exoskeletons and exosuits, particularly in narrowing the
gap between laboratory studies and clinical applications.

Acknowledgements

Article processing charges were provided in part by the UCF College of Graduate
Studies Open Access Publishing Fund.

Author details

Jirui Fu1, Zubadiah Al-Mashhadani2, Keith Currier1, Al-Muthanna Al-Ani1

and Joon-Hyuk Park1*

1 Department of Aerospace and Mechanical Engineering, University of Central
Florida, Orlando FL, USA

2 Department of Electrical and Computer Engineering, University of Central Florida,
Orlando FL, USA

*Address all correspondence to: joonpark@ucf.edu

©2023TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

13

Challenges and Trends of Machine Learning in the Myoelectric Control System for Upper…
DOI: http://dx.doi.org/10.5772/intechopen.111901



References

[1] Bardi E, Gandolla M, Braghin F,
Resta F, Pedrocchi A, Ambrosini E.
Upper limb soft robotic wearable
devices: A systematic review. Journal of
NeuroEngineering And Rehabilitation.
2022;19:87

[2] Fu J, Hosseini S, Simpson R,
Brooks A, Huff R, Park J. A bilateral six
degree of freedom cable-driven upper
body exosuit. In: 2022 IEEE International
Conference on Mechatronics and
Automation (ICMA). Guilin, Guangxi,
China: IEEE; 2022. pp. 617-623

[3]Gull M, Bai S, Bak T. A review on
design of upper limb exoskeletons.
Robotics. 2020;9:16

[4]Ding S, Ouyang X, Liu T, Li Z,
Yang H. Gait event detection of a lower
extremity exoskeleton robot by an
intelligent IMU. IEEE Sensors Journal.
2018;18:9728-9735

[5]Wang S, Wang L, Meijneke C,
Van Asseldonk E, Hoellinger T,
Cheron G, et al. Design and control of
the MINDWALKER exoskeleton. IEEE
Transactions on Neural Systems and
Rehabilitation Engineering. 2014;23:
277-286

[6]Massardi S, Rodriguez-Cianca D,
Pinto-Fernandez D, Moreno J,
Lancini M, Torricelli D. Characterization
and evaluation of human–exoskeleton
interaction dynamics: A review. Sensors.
2022;22:3993

[7] Kim J, Shim M, Ahn D, Son B, Kim S,
Kim D, et al. Design of a knee
exoskeleton using foot pressure and knee
torque sensors. International Journal of
Advanced Robotic Systems. 2015;12:112

[8] Fu J, Choudhury R, Hosseini S,
Simpson R, Park J. Myoelectric control

Systems for Upper Limb Wearable
Robotic Exoskeletons and Exosuits—A
Systematic Review. Sensors. 2022;22:
8134

[9]Dupont A, Morin E. A myoelectric
control evaluation and trainer
system. IEEE Transactions on
Rehabilitation Engineering. 1994;2:
100-107

[10] Englehart K, Hudgin B, Parker P. A
wavelet-based continuous classification
scheme for multifunction myoelectric
control. IEEE Transactions on
Biomedical Engineering. 2001;48:
302-311

[11] Englehart K, Hudgins B. A robust,
real-time control scheme for
multifunction myoelectric control. IEEE
Transactions on Biomedical Engineering.
2003;50:848-854

[12] Robertson D, Caldwell G, Hamill J,
Kamen G, Whittlesey S. Research
Methods in Biomechanics. Champaign,
IL, USA: Human Kinetics; 2014

[13] Bi L, Feleke A, Guan C. A review on
EMG-based motor intention prediction
of continuous human upper limb motion
for human-robot collaboration.
Biomedical Signal Processing and
Control. 2019;51:113-127

[14] Rechy-Ramirez E, Hu H. Bio-signal
based control in assistive robots: A
survey. Digital Communications and
Networks. 2015;1:85-101

[15] Lotti N, Xiloyannis M, Missiroli F,
Chiaradia D, Frisoli A, Sanguineti V,
et al. Intention-detection strategies for
upper limb exosuits: Model-based
myoelectric vs dynamic-based control.
In: 2020 8th IEEE RAS/EMBS
International Conference for Biomedical

14

Multi-Robot Systems



Robotics and Biomechatronics (BioRob).
New York, NY, USA: IEEE; 2020.
pp. 410-415

[16] Accogli A, Grazi L, Crea S,
Panarese A, Carpaneto J, Vitiello N, et al.
EMG-based detection of User’s
intentions for human-machine shared
control of an assistive upper-limb
exoskeleton. In: Wearable Robotics:
Challenges and Trends. Gewerbestrasse,
Switzerland: Springer, Cham; 2016.
pp. 181-185

[17] Lenzi T, Rossi S, Vitiello N,
Carrozza M. Intention-based EMG
control for powered exoskeletons. IEEE
Transactions on Bio-medical
Engineering. 2012;59:2180-2190

[18] Roche A, Rehbaum H, Farina D,
Aszmann O. Prosthetic myoelectric
control strategies: A clinical perspective.
Current Surgery Reports. 2014;2:1-11

[19] Bayat N, Rastegari E, Li Q. Human
Gait Recognition Using Bag of Words
Feature-Representation Method. In:
Ahram T, Falcão C, editors, Human
Factors and Wearable Technologies.
AHFE International Conference. Vol. 29.
USA: AHFE Open Access, AHFE
International; 2022. DOI: 10.54941/
ahfe1001481

[20]Mesin L, Merletti R, Rainoldi A.
Surface EMG: The issue of electrode
location. Journal of Electromyography
and Kinesiology. 2009;19:719-726

[21]Merletti R, Farina D. Analysis of
intramuscular electromyogram signals.
Philosophical Transactions of the
Royal Society A: Mathematical, Physical
and Engineering Sciences. 2008;367:
357-368

[22] Li G, Li Y, Zhang Z, Geng Y, Zhou R.
Selection of sampling rate for EMG
pattern recognition based prosthesis

control. In: 2010 Annual International
Conference of the IEEE Engineering In
Medicine and Biology. Buenos Aires,
Argentina: IEEE; 2010. pp. 5058-5061

[23] Li G, Li Y, Yu L, Geng Y.
Conditioning and sampling issues of
EMG signals in motion recognition of
multifunctional myoelectric prostheses.
Annals of Biomedical Engineering. 2011;
39:1779-1787

[24]De Luca C, Donald Gilmore L,
Kuznetsov M, Roy S. Filtering the
surface EMG signal: Movement artifact
and baseline noise contamination.
Journal of Biomechanics. 2010;43:
1573-1579

[25]Oskoei M, Hu H. Myoelectric control
systems—A survey. Biomedical Signal
Processing and Control. 2007;2:275-294

[26] Phinyomark A, Phukpattaranont P,
Limsakul C. Feature reduction and
selection for EMG signal classification.
Expert Systems with Applications. 2012;
39:7420-7431

[27] Lashgari E, Maoz U. Dimensionality
reduction for classification of object
weight from electromyography. PLoS
One. 2021;16:e0255926

[28]Oskoei M, Hu H. Support vector
machine-based classification scheme for
myoelectric control applied to upper
limb. IEEE Transactions on Biomedical
Engineering. 2008;55:1956-1965

[29] Scheme E, Hudgins B, Englehart K.
Confidence-based rejection for
improved pattern recognition
myoelectric control. IEEE Transactions
on Biomedical Engineering. 2013;60:
1563-1570

[30] Scheme E, Englehart K, Hudgins B.
Selective classification for improved

15

Challenges and Trends of Machine Learning in the Myoelectric Control System for Upper…
DOI: http://dx.doi.org/10.5772/intechopen.111901



robustness of myoelectric control under
nonideal conditions. IEEE Transactions
on Biomedical Engineering. 2011;58:
1698-1705

[31] Jana M, Barua B, Hazarika S. Design
and development of a finger exoskeleton
for motor rehabilitation using
electromyography signals. In: 2019 23rd
International Conference on
Mechatronics Technology (ICMT).
Salerno, Italy: IEEE; 2019. pp. 1-6

[32] Arteaga M, Castiblanco J,
Mondragon I, Colorado J, Alvarado-
Rojas C. EMG-based adaptive trajectory
generation for an exoskeleton model
during hand rehabilitation exercises.
In: 2020 8th IEEE RAS/EMBS
International Conference for Biomedical
Robotics and Biomechatronics (BioRob).
New York, NY, USA: IEEE; 2020.
pp. 416-421

[33] Cheon S, Kim D, Kim S, Kang B,
Lee J, Gong H, et al. Single EMG sensor-
driven robotic glove control for reliable
augmentation of power grasping. IEEE
Transactions on Medical Robotics and
Bionics. 2021;3:179-189

[34] Su H, Li Z, Li G, Yang C. EMG-based
neural network control of an upper-limb
power-assist exoskeleton robot. In:
Advances In Neural Networks–ISNN
2013: 10th International Symposium on
Neural Networks, Dalian, China, July 4–
6, 2013, Proceedings, Part II 10. Dalian,
China: Springer, Berlin, Heidelberg;
2013. pp. 204-211

[35] Trigili E, Grazi L, Crea S, Accogli A,
Carpaneto J, Micera S, et al. Detection of
movement onset using EMG signals for
upper-limb exoskeletons in reaching
tasks. Journal of Neuroengineering and
Rehabilitation. 2019;16:45

[36] Kirchner E, Tabie M, Seeland A.
Multimodal movement prediction –

towards an individual assistance of
patients. PLoS One. 2014;9:e85060

[37]Wu Q, Chen B, Wu H. Neural-
network-enhanced torque estimation
control of a soft wearable exoskeleton for
elbow assistance. Mechatronics. 2019;63:
102279

[38] Zeng H, Li K, Wei N, Song R,
Tian X. A sEMG-controlled robotic hand
exoskeleton for rehabilitation in post-
stroke individuals. In: 2018 IEEE
International Conference on Cyborg and
Bionic Systems (CBS). Shenzhen, China:
IEEE; 2018. pp. 652-655

[39] Twardowski M, Roy S, Li Z,
Contessa P, De Luca G, Kline J. Motor unit
drive: A neural interface for real-time
upper limb prosthetic control. Journal of
Neural Engineering. 2019;16:3-5

[40] Secciani N, Topini A, Ridolfi A,
Meli E, Allotta B. A novel point-
in-polygon-based sEMG classifier for
hand exoskeleton systems. IEEE
Transactions on Neural Systems and
Rehabilitation Engineering. 2020;28:
3158-3166

[41] Godoy R, Dwivedi A, Liarokapis M.
Electromyography based decoding of
dexterous, in-hand manipulation
motions with temporal multichannel
vision transformers. IEEE Transactions
on Neural Systems and Rehabilitation
Engineering. 2022;30:2207-2216

[42] Tang Z, Zhang K, Sun S, Gao Z,
Zhang L, Yang Z. An upper-limb power-
assist exoskeleton using proportional
myoelectric control. Sensors. 2014;14:
6677-6694

[43] Pang M, Guo S, Song Z. Study on the
sEMG driven upper limb exoskeleton
rehabilitation device in bilateral
rehabilitation. Journal of Robotics and
Mechatronics. 2012;24:585

16

Multi-Robot Systems



[44] Loconsole C, Leonardis D,
Barsotti M, Solazzi M, Frisoli A,
Bergamasco M, et al. An emg-based
robotic hand exoskeleton for bilateral
training of grasp. In: 2013 World Haptics
Conference (WHC). Daejeon, South
Korea: IEEE; 2013. pp. 537-542

[45]Ngeo J, Tamei T, Shibata T,
Orlando M, Behera L, Saxena A, et al.
Control of an optimal finger exoskeleton
based on continuous joint angle
estimation from EMG signals. In:
2013 35th Annual International
Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC).
Osaka, Japan: IEEE; pp. 338-341

[46] Leonardis D, Barsotti M,
Loconsole C, Solazzi M, Troncossi M,
Mazzotti C, et al. An EMG-controlled
robotic hand exoskeleton for bilateral
rehabilitation. IEEE Transactions on
Haptics. 2015;8:140-151

[47] Burns M, Pei D, Vinjamuri R.
Myoelectric control of a soft hand
exoskeleton using kinematic synergies.
IEEE Transactions on Biomedical
Circuits and Systems. 2019;13:
1351-1361

[48] Cisnal A, Pérez-Turiel J, Fraile J,
Sierra D, Fuente E. RobHand: A hand
exoskeleton with real-time EMG-driven
embedded control. Quantifying hand
gesture recognition delays for bilateral
rehabilitation. IEEE Access. 2021;9:
137809-137823

[49] Li Z, Wang B, Sun F, Yang C, Xie Q,
Zhang W. sEMG-based joint force
control for an upper-limb power-assist
exoskeleton robot. IEEE Journal of
Biomedical and Health Informatics.
2014;18:1043-1050

[50] Lu L, Wu Q, Chen X, Shao Z,
Chen B, Wu H. Development of a sEMG-
based torque estimation control strategy

for a soft elbow exoskeleton. Robotics
and Autonomous Systems. 2019;111:
88-98

[51] Kopke J, Hargrove L, Ellis M.
Applying LDA-based pattern recognition
to predict isometric shoulder and elbow
torque generation in individuals with
chronic stroke with moderate to severe
motor impairment. Journal of
Neuroengineering and Rehabilitation.
2019;16:4-6

[52] Sierotowicz M, Lotti N, Nell L,
Missiroli F, Alicea R, Zhang X, et al.
EMG-driven machine learning control of
a soft glove for grasping assistance and
rehabilitation. IEEE Robotics and
Automation Letters. 2022;7:1566-1573

[53]Meattini R, Bernardini A, Palli G,
Melchiorri C. sEMG-based minimally
supervised regression using soft-DTW
neural networks for robot hand
grasping control. IEEE Robotics
and Automation Letters. 2022;7:
10144-10151

[54]Hamaya M, Matsubara T, Noda T,
Teramae T, Morimoto J. Learning
assistive strategies for exoskeleton robots
from user-robot physical interaction.
Pattern Recognition Letters. 2017;99:
67-76

[55]Deisenroth M, Rasmussen C. PILCO:
A model-based and data-efficient
approach to policy search. In:
Proceedings of the 28th International
Conference on Machine Learning
(ICML-11). 2011. pp. 465-472

[56] Phinyomark A, Quaine F,
Charbonnier S, Serviere C, Tarpin-
Bernard F, Laurillau Y. EMG feature
evaluation for improving myoelectric
pattern recognition robustness. Expert
Systems with Applications. 2013;40:
4832-4840

17

Challenges and Trends of Machine Learning in the Myoelectric Control System for Upper…
DOI: http://dx.doi.org/10.5772/intechopen.111901



[57]Geng Y, Samuel O, Wei Y, Li G.
Improving the robustness of real-time
myoelectric pattern recognition against
arm position changes in Transradial
amputees. BioMed Research
International. 2017;2017:5090454

[58] Tkach D, Huang H, Kuiken T. Study
of stability of time-domain features for
electromyographic pattern recognition.
Journal of NeuroEngineering and
Rehabilitation. 2010;7:21

[59] Boschmann A, Kaufmann P,
Platzner M, Winkler M. Towards multi-
movement hand prostheses: Combining
adaptive classification with high
precision sockets. In: Proceedings of the
2nd European Conference Technically
Assisted Rehabilitation. 2009

[60] Bank D, Koenigstein N, Giryes R.
Autoencoders. CoRR. 2020. DOI: abs/
2003.05991

[61] Teh Y, Hargrove L. Using latent
representations of muscle activation
patterns to mitigate myoelectric
interface noise. In: 2021 10th
International IEEE/EMBS Conference
On Neural Engineering (NER).
pp. 1148-1151

[62] Lv B, Sheng X, Zhu X. Improving
myoelectric pattern recognition
robustness to electrode shift by
autoencoder. In: 2018 40th Annual
International Conference of the IEEE
Engineering in Medicine and Biology
Society (EMBC). pp. 5652-5655

[63] Kang H, Wang J. Adaptive control of
5 DOF upper-limb exoskeleton robot
with improved safety. ISA Transactions.
2013;52:844-852

[64] López N, Sciascio F, Soria C,
Valentinuzzi M. Robust EMG sensing
system based on data fusion for
myoelectric control of a robotic arm.

BioMedical Engineering OnLine.
2009;8:5

[65] Zhuang Y, Yao S, Ma C, Song R.
Admittance control based on EMG-
driven musculoskeletal model improves
the human–robot synchronization. IEEE
Transactions on Industrial Informatics.
2019;15:1211-1218

[66]Han J, Lee J, Choi H, Kim J, Choi J.
Policy Design for an Ankle-Foot Orthosis
Using Simulated Physical Human–Robot
Interaction via deep reinforcement
learning. IEEE Transactions on Neural
Systems and Rehabilitation Engineering.
2022;30:2186-2197

[67] Caggiano V, Wang H, Durandau G,
Sartori M, Kumar V. MyoSuite–A
contact-rich simulation suite for
musculoskeletal motor control. ArXiv
Preprint ArXiv:2205.13600. 2022

[68] Fu J, Choudhury R, Park J. Deep
reinforcement learning based upper limb
neuromusculoskeletal simulator for
modelling human motor control. IEEE.
2023, Under Review

[69]Mnih V, Kavukcuoglu K, Silver D,
Rusu A, Veness J, Bellemare M, et al.
Human-level control through deep
reinforcement learning. Nature. 2015;
518:529-533

[70] Silver D, Schrittwieser J,
Simonyan K, Antonoglou I, Huang A,
Guez A, et al. Mastering the game of go
without human knowledge. Nature.
2017;550:354-359

[71] Kidziński Ł, Mohanty S, Ong C,
Huang Z, Zhou S, Pechenko A, et al.
Learning to run challenge solutions:
Adapting reinforcement learning
methods for neuromusculoskeletal
environments. In: The NIPS ‘17
Competition: Building Intelligent

18

Multi-Robot Systems



Systems. Gewerbestrasse, Switzerland:
Springer, Cham; 2018. pp. 121-153

[72]Wannawas N, Subramanian M,
Faisal A. Neuromechanics-Based Deep
Reinforcement Learning of
Neurostimulation Control in FES
Cycling. Italy: IEEE; 2021

[73] Pilarski P, Dawson M, Degris T,
Fahimi F, Carey J, Sutton R. Online
human training of a myoelectric
prosthesis controller via actor-critic
reinforcement learning. In: 2011 IEEE
International Conference on
Rehabilitation Robotics. 2011. pp. 1-7

[74]Mnih V, Badia A, Mirza M,
Graves A, Lillicrap T, Harley T, et al.
Asynchronous methods for deep
reinforcement learning. In: International
Conference on Machine Learning. New
York, NY, USA: JMLR; 2016.
pp. 1928-1937

[75]Wu W, Saul K, Huang H. Using
reinforcement learning to estimate
human joint moments from
electromyography or joint kinematics:
An alternative solution to
musculoskeletal-based biomechanics.
Journal of Biomechanical Engineering.
2021;143:2-3

19

Challenges and Trends of Machine Learning in the Myoelectric Control System for Upper…
DOI: http://dx.doi.org/10.5772/intechopen.111901


