12 research outputs found

    Phytoplankton Bloom Changes under Extreme Geophysical Conditions in the Northern Bering Sea and the Southern Chukchi Sea

    No full text
    The northern Bering Sea and the southern Chukchi Sea are undergoing rapid regional biophysical changes in connection with the recent extreme climate change in the Arctic. The ice concentration in 2018 was the lowest since observations began in the 1970s, due to the unusually warm southerly wind in winter, which continued in 2019. We analyzed the characteristics of spring phytoplankton biomass distribution under the extreme environmental conditions in 2018 and 2019. Our results show that higher phytoplankton biomass during late spring compared to the 18-year average was observed in the Bering Sea in both years. Their spatial distribution is closely related to the open water extent following winter-onset sea ice retreat in association with dramatic atmospheric conditions. However, despite a similar level of shortwave heat flux, the 2019 springtime biomass in the Chukchi Sea was lower than that in 2018, and was delayed to summer. We confirmed that this difference in bloom timing in the Chukchi Sea was due to changes in seawater properties, determined by a combination of northward oceanic heat flux modulation by the disturbance from more extensive sea ice in winter and higher surface net shortwave heat flux than usual

    Multi-temporal variation of the Ross Sea Polynya in response to climate forcings

    No full text
    The multi-temporal scales of two physical characteristics (areas and occurrence time) of the Ross Sea Polynya (RSP) in Antarctica were analysed using a sea-ice concentration data set (1979–2014) derived from the Scanning Multichannel Microwave Radiometer, the Special Sensor Microwave Imager and Sensor Microwave Imager Sounder. Then, the Ensemble Empirical Mode Decomposition (EEMD) was applied to the data sets to decompose signals into finite numbers of intrinsic mode functions and a residual mode: long time trend. This approach allowed us to understand the long-term variability of the RSP area and occurrence in response to atmospheric forcing through teleconnections between low and high latitudes by comparing the Nino3.4 and Southern Annular Mode (SAM) indices. The nonlinear trend of the RSP areas derived from the EEMD residual had an upward trending shift in the early 1990s and was fairly consistent with the nonlinear trend of Nino3.4. However, the trend of RSP occurrence time progressively increased and had a significant effect on the long time scale. The trend of the RSP area is significantly correlated (+0.98) with the ratio of the trend of the meridional to zonal wind components related with the nonlinearity of Nino3.4, suggesting that meridional wind stress dominated the changes of the polynya area in the Ross Sea. In addition, the nonlinear trends between the SAM and RSP occurrence time show a strong positive correlation, contributing to the earlier onset of polynya expansion and delayed connection with the open ocean owing to enhanced southerly winds

    Reconstructed 3-D Ocean Temperature Derived from Remotely Sensed Sea Surface Measurements for Mixed Layer Depth Analysis

    No full text
    The mixed layer depth (MLD) is generally estimated using in situ or model data. However, MLD analyses have limitations due to the sparse resolution of the observed data. Therefore, this study reconstructs three-dimensional (3D) ocean thermal structures using only satellite sea surface measurements for a higher spatial and longer temporal resolution than that of Argo and diagnoses the decadal variation of global MLD variability. To simulate the ocean thermal structures, the relationship between the ocean subsurface temperature and the sea surface fields was computed based on gridded Argo data. Based on this relationship, high spatial resolution and extended periods of satellite-derived altimeter, sea surface temperature (SST), and wind stress data were used to estimate the 3D ocean thermal structures with 0.25° spatial resolution and 26 standard depth levels (5–2000 m) for 24 years (1993–2016). Then, the MLD was calculated using a temperature threshold method (∆T = 0.2 °C) and correlated reasonably well (>0.9) with other MLD datasets. The extended 24-year data enabled us to analyze the decadal variability of the MLD. The global linear trend of the 24-year MLD is −0.110 m yr−1; however, from 1998 to 2012, the linear trend is −0.003 m yr−1 which is an order of magnitude smaller than that of other periods and corresponds to a global warming hiatus period. Via comparisons between the trends of the SST anomalies and the MLD anomalies, we tracked how the MLD trend changes in response to the global warming hiatus

    Upwelling processes driven by contributions from wind and current in the Southwest East Sea (Japan Sea)

    No full text
    The occurrence of coastal upwelling is influenced by the intensity and duration of sea surface wind stress and geophysical components such as vertical stratification, bottom topography, and the entrainment of water masses. In addition, strong alongshore currents can drive upwelling. Accordingly, this study analyzes how wind stress and ocean currents contribute to changing coastal upwelling along the southwest coast of the East Sea (Japan Sea), which has not yet been reported quantitatively. This study aims to estimate each geophysical factor affecting upwelling processes using the Upwelling Age index. The index assesses the major contributors to the upwelling process using the relationship between physical forcing and upwelling water fraction estimated from shipboard hydrographic data from January 1993 to October 2018. These findings reveal that wind-driven upwelling was dominant off the northern coast. In contrast, current-driven upwelling prevailed off the southern coast. These results suggest that persistent alongshore currents through the Korea Strait make the southern region a prolific upwelling area. Accordingly, it can shed light on the mechanisms of coastal upwelling in the study area, which is crucial for understanding the influence of physical forces on ocean ecosystems.11Nsciescopu

    Verrucous Carcinoma of the Eyelid

    No full text

    Role of Aerosols in Spring Blooms in the Central Yellow Sea During the COVID-19 Lockdown by China

    No full text
    Reduced amounts of aerosols blowing into the Yellow Sea (YS), owing to the temporary lockdown of factories in China during COVID-19, resulted in a 15% decrease in spring chlorophyll-a concentration (CHL) in March 2020 compared to its mean March values from 2003 to 2021. Particularly, the effect of land-based AOD is insignificant compared with that of atmospheric aerosols flowing into the YS, as indicated by the currents and wind directions. Hence, the main objective of this study was to understand the relationship between atmospheric aerosols and CHL by quantitatively considering relevant environmental changes using a Random Forest (RF) algorithm. Various input physical forcing variables to RF were employed, including aerosol optical depth (AOD), sea surface temperature (SST), mixed layer depth (MLD), wind divergence (WD), and total precipitation (TP). From the RF-based analysis, we estimated the relative contribution of each physical forcing variable to the difference in CHL during and after the COVID-19 lockdown period. The sensitivity of the RF model to changes in aerosol levels indicated positive effects of increased amounts of aerosols during spring blooms. Additionally, we calculated the quantitative contribution of aerosols to CHL changes. When SST was warmer and TP was lower than their climatology in March 2020, CHL increased by 0.22 mg m(-3) and 0.02 mg m(-3), respectively. Conversely, when MLD became shallower and AOD was lower than their climatology, CHL decreased as much as 0.01 mg m(-3) and 0.20 mg m(-3). Variations in WD caused no significant change in CHL. Overall, the specific estimations for reduced spring blooms were caused by a reduction in aerosols during the COVID-19 lockdown period. Furthermore, the RF developed in this study can be used to examine CHL changes and the relative role of significant environmental changes in biological blooms in the ocean for any normal year.Y

    Impaired phagocytosis of apoptotic cells causes accumulation of bone marrow-derived macrophages in aged mice

    No full text
    Accumulation of tissue macrophages is a significant characteristic of disease-associated chronic inflammation, and facilitates the progression of disease pathology. However, the functional roles of these bone marrow-derived macrophages (BMDMs) in aging are unclear. Here, we identified agedependent macrophage accumulation in the bone marrow,showing that aging significantly increases the number of M1 macrophages and impairs polarization of BMDMs. We found that age-related dysregulation of BMDMs is associated with abnormal overexpression of the anti-inflammatory interleukin-10.BMDM dysregulation in aging impairs the expression levels of pro-inflammatory cytokines and genes involved in B-cell maturation and activation. Phagocytosis of apoptotic Jurkat cells by BMDMs was reduced because of low expression of phagocytic receptor CD14, indicating that increased apoptotic cells may result from defective phagocytosis of apoptotic cells in the BM of aged mice. Therefore, CD14 may represent a promising target for preventing BMDM dysregulation, and macrophage accumulation may provide diagnostic and therapeutic clues. © 2017 by the The Korean Society for Biochemistry and Molecular Biology.1
    corecore