842 research outputs found

    Design Analysis on Planting Patterns and Relationships Used in Artists\u27 Gardens at the Seoul Garden Show

    Get PDF
    This study aims to analyze the design of the artist gardens at the Seoul Garden Show based on planting patterns by identifying the relationships among plants and species of plants. The author selected 10 artworks as the study subject, preferentially targeting cases with clear drawings and those having at least 20 herbaceous plants among the gardens created for the Seoul Garden Show held at the World Cup Park in Sangam-dong, Seoul. The author used Net Miner 4.0, a social network analysis program, to examine the direct connection among plantings. Furthermore, the study analyzed the degree of connection and centrality, which could be helpful in explaining the types of plant materials and characteristics of planting patterns among the index that were available for the design analysis. According to the results of this analysis, I derived the plants of the upper groups based on the degree and degree centrality. Simultaneously, the upper groups were designated up to the third rank. An in-depth study of the characteristics and meanings of the plants of the upper groups was then undertaken. To summarize the results of the study, chrysanthemum was found to be the plant with the highest degree centrality, followed by willow herb. In the case of planting with the highest degree for each artwork, approximately 10 species or more are connected. However, it was difficult to find a similar pattern of planting method among the artworks. This is probably due to the characteristics of the Seoul Garden Show because they had to present a powerful theme in a small area and use appropriate plant concepts to meet the goal. However, chrysanthemum types, Shrubs, herbaceous plants with distinctive leaves, and herbaceous plants with distinctive flowers exhibited a higher degree of connection than the other plants

    Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans

    Get PDF
    In the clinical photoacoustic (PA) imaging, ultrasound (US) array transducers are typically used to provide B-mode images in real-time. To form a B-mode image, delay-and-sum (DAS) beamforming algorithm is the most commonly used algorithm because of its ease of implementation. However, this algorithm suffers from low image resolution and low contrast drawbacks. To address this issue, delay-multiply-and-sum (DMAS) beamforming algorithm has been developed to provide enhanced image quality with higher contrast, and narrower main lobe compared but has limitations on the imaging speed for clinical applications. In this paper, we present an enhanced real-time DMAS algorithm with modified coherence factor (CF) for clinical PA imaging of humans in vivo. Our algorithm improves the lateral resolution and signal-to-noise ratio (SNR) of original DMAS beam-former by suppressing the background noise and side lobes using the coherence of received signals. We optimized the computations of the proposed DMAS with CF (DMAS-CF) to achieve real-time frame rate imaging on a graphics processing unit (GPU). To evaluate the proposed algorithm, we implemented DAS and DMAS with/without CF on a clinical US/PA imaging system and quantitatively assessed their processing speed and image quality. The processing time to reconstruct one B-mode image using DAS, DAS with CF (DAS-CF), DMAS, and DMAS-CF algorithms was 7.5, 7.6, 11.1, and 11.3 ms, respectively, all achieving the real-time imaging frame rate. In terms of the image quality, the proposed DMAS-CF algorithm improved the lateral resolution and SNR by 55.4% and 93.6 dB, respectively, compared to the DAS algorithm in the phantom imaging experiments. We believe the proposed DMAS-CF algorithm and its real-time implementation contributes significantly to the improvement of imaging quality of clinical US/PA imaging system.11Ysciescopu

    Self-assembled nanocomplex between polymerized phenylboronic acid and doxorubicin for efficient tumor-targeted chemotherapy

    Get PDF
    Since the discovery that nano-scaled particulates can easily be incorporated into tumors via the enhanced permeability and retention (EPR) effect, such nanostructures have been exploited as therapeutic small molecule delivery systems. However, the convoluted synthetic process of conventional nanostructures has impeded their feasibility and reproducibility in clinical applications. Herein, we report an easily prepared formulation of self-assembled nanostructures for systemic delivery of the anti-cancer drug doxorubicin (DOX). Phenylboronic acid (PBA) was grafted onto the polymeric backbone of poly(maleic anhydride). pPBA-DOX nanocomplexes were prepared by simple mixing, on the basis of the strong interaction between the 1,3-diol of DOX and the PBA moiety on pPBA. Three nanocomplexes (1, 2, 4) were designed on the basis of [PBA]:[DOX] molar ratios of 1: 1, 2: 1, and 4: 1, respectively, to investigate the function of the residual PBA moiety as a targeting ligand. An acid-labile drug release profile was observed, owing to the intrinsic properties of the phenylboronic ester. Moreover, the tumor-targeting ability of the nanocomplexes was demonstrated, both in vitro by confocal microscopy and in vivo by fluorescence imaging, to be driven by an inherent property of the residual PBA. Ligand competition assays with free PBA pre-treatment demonstrated the targeting effect of the residual PBA from the nanocomplexes 2 and 4. Finally, the nanocomplexes 2 and 4, compared with the free DOX, exhibited significantly greater anti-cancer effects in vitro and even in vivo. Our pPBA-DOX nanocomplex enables a new paradigm for self-assembled nanostructures with potential biomedical applications.115Ysciescopu

    Measurement of the Background Activities of a 100Mo-enriched powder sample for AMoRE crystal material using a single high purity germanium detector

    Full text link
    The Advanced Molybdenum-based Rare process Experiment (AMoRE) searches for neutrino-less double-beta (0{\nu}\b{eta}\b{eta}) decay of 100Mo in enriched molybdate crystals. The AMoRE crystals must have low levels of radioactive contamination to achieve low background signals with energies near the Q-value of the 100Mo 0{\nu}\b{eta}\b{eta} decay. To produce low-activity crystals, radioactive contaminants in the raw materials used to form the crystals must be controlled and quantified. 100EnrMoO3 powder, which is enriched in the 100Mo isotope, is of particular interest as it is the source of 100Mo in the crystals. A high-purity germanium detector having 100% relative efficiency, named CC1, is being operated in the Yangyang underground laboratory. Using CC1, we collected a gamma spectrum from a 1.6-kg 100EnrMoO3 powder sample enriched to 96.4% in 100Mo. Activities were analyzed for the isotopes 228Ac, 228Th, 226Ra, and 40K. They are long-lived naturally occurring isotopes that can produce background signals in the region of interest for AMoRE. Activities of both 228Ac and 228Th were < 1.0 mBq/kg at 90% confidence level (C.L.). The activity of 226Ra was measured to be 5.1 \pm 0.4 (stat) \pm 2.2 (syst) mBq/kg. The 40K activity was found as < 16.4 mBq/kg at 90% C.L.Comment: 20 pages, 6 figures, 5 table

    Correction to: Circulating exosomes from patients with systemic lupus erythematosus induce an proinflammatory immune response

    Get PDF
    An amendment to this paper has been published and can be accessed via the original article

    Efficacy and Tolerability of GCSB-5 for Hand Osteoarthritis: A Randomized, Controlled Trial

    Get PDF
    AbstractPurposeThe aim of this study was to investigate the efficacy and tolerability of GCSB-5, a mixture of 6 purified herbal extracts, in treating hand osteoarthritis (OA).MethodsA randomized, double-blind, placebo-controlled trial enrolled 220 patients with hand OA who had baseline a visual analog scale joint pain score of >30 of 100 mm at 3 hospitals between September 2013 and November 2014. After randomization, patients were allocated to receive oral GCSB-5 600 mg or placebo, bid for 12 weeks. The primary end point was the change in the Australian/Canadian OA Hand Index (AUSCAN)-defined pain score at 4 weeks relative to baseline. Secondary end points included the frequency Outcome Measures in Rheumatology–OA Research Society International (OMERACT-OARSI)-defined response at 4, 8, 12, and 16 weeks after randomization.FindingsThe allocated treatment was received by 109 and 106 patients in the GCSB-5 and placebo groups, respectively. At 4 weeks, the median (interquartile range) change in AUSCAN pain score relative to baseline was significantly greater in the GCSB-5 group than in the placebo group (–9.0 [–23.8 to –0.4] vs –2.2 [–16.7 to 6.0]; P = 0.014), with sustained improvement at 8, 12, and 16 weeks (P = 0.039). The GCSB-5 group also had a significantly greater OMERACT-OARSI–defined response rate than did the placebo group at 4 weeks (44.0% vs 30.2%), 8 weeks (51.4% vs 35.9%), 12 weeks (56.9% vs 40.6%), and 16 weeks (50.5% vs 37.7%) (P = 0.0074). The 2 treatments exhibited comparable safety profiles.ImplicationsGCSB-5 was associated with improved symptoms of hand OA, with good tolerability, in these patients. GCSB-5 may be a well-tolerated alternative of, or addition to, the treatment of hand OA. ClinicalTrials.gov identifier: NCT01910116

    Rapid and simple single-chamber nucleic acid detection system prepared through nature-inspired surface engineering

    Get PDF
    Background: Nucleic acid (NA)-based diagnostics enable a rapid response to various diseases, but current techniques often require multiple labor-intensive steps, which is a major obstacle to successful translation to a clinical setting. Methods: We report on a surface-engineered single-chamber device for NA extraction and in situ amplification without sample transfer. Our system has two reaction sites: A NA extraction chamber whose surface is patterned with micropillars and a reaction chamber filled with reagents for in situ polymerase-based NA amplification. These two sites are integrated in a single microfluidic device; we applied plastic injection molding for cost-effective, mass-production of the designed device. The micropillars were chemically activated via a nature-inspired silica coating to possess a specific affinity to NA. Results: As a proof-of-concept, a colorimetric pH indicator was coupled to the on-chip analysis of NA for the rapid and convenient detection of pathogens. The NA enrichment efficiency was dependent on the lysate incubation time, as diffusion controls the NA contact with the engineered surface. We could detect down to 1×103 CFU by the naked eye within one hour of the total assay time. Conclusion: We anticipate that the surface engineering technique for NA enrichment could be easily integrated as a part of various types of microfluidic chips for rapid and convenient nucleic acid-based diagnostics. © 2021 Ivyspring International Publisher. All rights reserved.1
    corecore