3,875 research outputs found

    k-Space Deep Learning for Reference-free EPI Ghost Correction

    Full text link
    Nyquist ghost artifacts in EPI are originated from phase mismatch between the even and odd echoes. However, conventional correction methods using reference scans often produce erroneous results especially in high-field MRI due to the non-linear and time-varying local magnetic field changes. Recently, it was shown that the problem of ghost correction can be reformulated as k-space interpolation problem that can be solved using structured low-rank Hankel matrix approaches. Another recent work showed that data driven Hankel matrix decomposition can be reformulated to exhibit similar structures as deep convolutional neural network. By synergistically combining these findings, we propose a k-space deep learning approach that immediately corrects the phase mismatch without a reference scan in both accelerated and non-accelerated EPI acquisitions. To take advantage of the even and odd-phase directional redundancy, the k-space data is divided into two channels configured with even and odd phase encodings. The redundancies between coils are also exploited by stacking the multi-coil k-space data into additional input channels. Then, our k-space ghost correction network is trained to learn the interpolation kernel to estimate the missing virtual k-space data. For the accelerated EPI data, the same neural network is trained to directly estimate the interpolation kernels for missing k-space data from both ghost and subsampling. Reconstruction results using 3T and 7T in-vivo data showed that the proposed method outperformed the image quality compared to the existing methods, and the computing time is much faster.The proposed k-space deep learning for EPI ghost correction is highly robust and fast, and can be combined with acceleration, so that it can be used as a promising correction tool for high-field MRI without changing the current acquisition protocol.Comment: To appear in Magnetic Resonance in Medicin

    Performance and Fouling in Pre-Denitrification Membrane Bioreactors Treating High-Strength Wastewater from Food Waste Disposers

    Get PDF
    The study investigated the performance of the pre-denitrification membrane bioreactor (MBR) process to treat high-strength wastewater generated from food waste disposals. Extracellular polymeric substances (EPS) as membrane foulant and microbial community profiles were analyzed under different hydraulic retention time (HRT) operation conditions. The pre-denitrification MBR was effective for treating food wastewater with high chemical oxygen demand (COD)/N resulting in high total nitrogen (TN) removal efficiency. The operational data showed that effluent qualities in terms of COD, TN, and TP improved with longer HRT. However, membrane fouling potential as shown by specific membrane fouling rate and specific resistance to filtration (SRF) increased as HRT increased. The longer HRT conditions or lower influent loading led to higher levels of bound EPS while HRT did not show large effects on the level of soluble microbial products (SMP). The restriction fragment length polymorphism (RFLP) analysis showed similar microbial banding patterns from the sludges generated under different HRT conditions, indicating that HRT had minimal effects on the composition of microbial communities in the system. All these results suggest that the MBR with pre-denitrification is a feasible option for treating high-strength food wastewater and that different HRT conditions could affect the operational performance and the fouling rate, which is governed via changes in microbial responses through EPS in the system

    Production of Transgenic Cloned Miniature Pigs with Membrane-bound Human Fas Ligand (FasL) by Somatic Cell Nuclear Transfer

    Get PDF
    Cell-mediated xenograft rejection, including NK cells and CD8+ CTL, is a major obstacle in successful pig-to-human xenotransplantation. Human CD8+ CTL and NK cells display high cytotoxicity for pig cells, mediated at least in part by the Fas/FasL pathway. To prevent cell-mediated xenocytotoxicity, a membrane-bound form of human FasL (mFasL) was generated as an inhibitor for CTL and NK cell cytotoxicity that could not be cleaved by metalloproteinase to produce putative soluble FasL. We produced two healthy transgenic pigs harboring the mFasL gene via somatic cell nuclear transfer (SCNT). In a cytotoxicity assay using transgenic clonal cell lines and transgenic pig ear cells, the rate of CD8+ CTL-mediated cytotoxicity was significantly reduced in transgenic pig's ear cells compared with that in normal minipig fetal fibroblasts. Our data indicate that grafts of transgenic pigs expressing membrane-bound human FasL control the cellular immune response to xenografts, creating a window of opportunity to facilitate xenograft survival

    Symmetry-protected flatband condition for Hamiltonians with local symmetry

    Full text link
    We derive symmetry-based conditions for tight-binding Hamiltonians with flatbands to have compact localized eigenstates occupying a single unit cell. The conditions are based on unitary operators commuting with the Hamiltonian and associated with local symmetries that guarantee compact localized states and a flatband. We illustrate the conditions for compact localized states and flatbands with simple Hamiltonians with given symmetries. We also apply these results to general cases such as the Hamiltonian with long-range hoppings and higher-dimensional Hamiltonian.Comment: 7 pages, 2 figure

    Strain-shear coupling in bilayer MoS2

    Get PDF
    Layered materials such as graphite and transition metal dichalcogenides have extremely anisotropic mechanical properties owing to orders of magnitude difference between in-plane and out-of-plane interatomic interaction strengths. Although effects of mechanical perturbations on either intra- or inter-layer interactions have been extensively investigated, mutual correlations between them have rarely been addressed. Here we show that layered materials have an inevitable coupling between in-plane uniaxial strain and interlayer shear. Because of this, the uniaxial in-plane strain induces an anomalous splitting of the degenerate interlayer shear phonon modes such that the split shear mode along the tensile strain is not softened but hardened contrary to the case of intralayer phonon modes. We confirm the effect by measuring Raman shifts of shear modes of bilayer MoS2 under strain. Moreover, by analyzing the splitting, we obtain an unexplored off-diagonal elastic constant, demonstrating that Raman spectroscopy can determine almost all mechanical constants of layered materials.Comment: 36 pages, 10 figure

    A novel 1-D periodic defected ground structure for planar circuits

    Full text link

    Evaluation of a specific diagnostic marker for rheumatoid arthritis based on cyclic citrullinated peptide

    Get PDF
    AbstractA specific peptide marker for diagnosing rheumatoid arthritis (RA) was found based on cyclic citrullinated peptide (CCP) using the following three steps: (1) analysis of the binding epitope of autoimmune antibodies using Ļµ-aminocaproic acid-modified peptides; (2) RA diagnosis using sequence-modified peptides; and (3) evaluation of the peptidesā€™ diagnostic performance for RA diagnosis. Ninety-five serum samples were analyzed by ELISA and compared using MedCalc (version 15.2.1). Microplate binding Ļµ-aminocaproic acid was added to the N- or C-terminal of the CCP sequence. The N-terminal anchoring peptide assay showed 15% higher specificity compared with the C-terminal anchoring peptide assay. Based on this result, the hydrophilic C-terminal sequence of CCP was substituted with a hydrophobic amino acid. Among the sequence-modified peptides, CCP11A (in which alanine was substituted for the 11th amino acid of CCP) assay showed the highest sensitivity (87%) and specificity (100%) for RA diagnosis. Thus, CCP11A was selected as a possible specific marker peptide for RA diagnosis and further analyzed. The results of this analysis indicated that CCP11A showed better specificity than the CCP assay in both healthy individuals (11% better) and OA cohort (20% better). From these results, CCP11A was evaluated as a specific marker for diagnosing RA with higher diagnostic performance

    Adenofibroma of Skene's Duct: A Case Report

    Get PDF
    Skene's glands, also known as paraurethral glands, are homologues of the male prostate, in which painless cystic masses and inflammation due to obstruction have been rarely found and reported. In addition, there have been rare reported cases of adenocarcinoma of Skene's glands. Recently, the authors experienced the first case of adenofibroma arising in Skene's glands of a 62-year-old woman with coital pain. Hereby, we present the case with pathologic and immunohistochemical findings and a short review of literature
    • ā€¦
    corecore