125,041 research outputs found
Power Spectrum of Cosmic Momentum Field Measured from the SFI Galaxy Sample
We have measured the cosmic momentum power spectrum from the peculiar
velocities of galaxies in the SFI sample. The SFI catalog contains field spiral
galaxies with radial peculiar velocities derived from the I-band Tully-Fisher
relation. As a natural measure of the large-scale peculiar velocity field, we
use the cosmic momentum field that is defined as the peculiar velocity field
weighted by local number of galaxies. We have shown that the momentum power
spectrum can be derived from the density power spectrum for the constant linear
biasing of galaxy formation, which makes it possible to estimate \beta_S =
\Omega_m^{0.6} / b_S parameter precisely where \Omega_m is the matter density
parameter and b_S is the bias factor for optical spiral galaxies. At each
wavenumber k we estimate \beta_S(k) as the ratio of the measured to the derived
momentum power over a wide range of scales (0.026 h^{-1}Mpc <~ k <~ 0.157
h^{-1}Mpc) that spans the linear to the quasi-linear regimes. The estimated
\beta_S(k)'s have stable values around 0.5, which demonstrates the constancy of
\beta_S parameter at scales down to 40 h^{-1}Mpc. We have obtained
\beta_S=0.49_{-0.05}^{+0.08} or \Omega_m = 0.30_{-0.05}^{+0.09} b_S^{5/3}, and
the amplitude of mass fluctuation as
\sigma_8\Omega_m^{0.6}=0.56_{-0.21}^{+0.27}. The 68% confidence limits include
the cosmic variance. We have also estimated the mass density power spectrum.
For example, at k=0.1047 h Mpc^{-1} (\lambda=60 h^{-1}Mpc) we measure
\Omega_m^{1.2} P_{\delta}(k)=(2.51_{-0.94}^{+0.91})\times 10^3 (h^{-1}Mpc)^3,
which is lower compared to the high-amplitude power spectra found from the
previous maximum likelihood analyses of peculiar velocity samples like Mark
III, SFI, and ENEAR.Comment: 12 pages, 9 figures, accepted for publication in Ap
Response of flexible space vehicles to docking impact. Volume 2 - Numerical investigation
Mathematical model and computerized simulation of flexible space vehicle response to docking impac
Computer program system for dynamic simulation and stability analysis of passive and actively controlled spacecraft. Volume 2: Program user's guide
For abstract, see N76-25319
Connectivity and genus in three dimensions
Algorithms for labeling, counting, and computing connected objects in binary three dimensional arra
Dynamic analysis of a flexible spacecraft with rotating components. Volume 3: Program code
For abstract, see N76-10204
Isospin-violating dark matter from a double portal
We study a simple model that can give rise to isospin-violating interactions
of Dirac fermion asymmetric dark matter to protons and neutrons through the
interference of a scalar and U(1) gauge boson contribution. The model can
yield a large suppression of the elastic scattering cross section off Xenon
relative to Silicon thus reconciling CDMS-Si and LUX results while being
compatible with LHC findings on the 126 GeV Higgs, electroweak precision tests
and flavour constraints.Comment: 25 pages, 7 figure
Dynamic analysis of a flexible spacecraft with rotating components. Volume 1: Analytical developments
Analytical procedures and digital computer code are presented for the dynamic analysis of a flexible spacecraft with rotating components. Topics, considered include: (1) nonlinear response in the time domain, and (2) linear response in the frequency domain. The spacecraft is assumed to consist of an assembly of connected rigid or flexible subassemblies. The total system is not restricted to a topological connection arrangement and may be acting under the influence of passive or active control systems and external environments. The analytics and associated digital code provide the user with the capability to establish spacecraft system nonlinear total response for specified initial conditions, linear perturbation response about a calculated or specified nominal motion, general frequency response and graphical display, and spacecraft system stability analysis
Dynamic analysis of a flexible spacecraft with rotating components. Volume 2: Program guide and examples
For abstract, see N76-10204
Computer program system for dynamic simulation and stability analysis of passive and actively controlled spacecraft. Volume 1. Theory
A theoretical development and associated digital computer program system is presented. The dynamic system (spacecraft) is modeled as an assembly of rigid and/or flexible bodies not necessarily in a topological tree configuration. The computer program system may be used to investigate total system dynamic characteristics including interaction effects between rigid and/or flexible bodies, control systems, and a wide range of environmental loadings. Additionally, the program system may be used for design of attitude control systems and for evaluation of total dynamic system performance including time domain response and frequency domain stability analyses. Volume 1 presents the theoretical developments including a description of the physical system, the equations of dynamic equilibrium, discussion of kinematics and system topology, a complete treatment of momentum wheel coupling, and a discussion of gravity gradient and environmental effects. Volume 2, is a program users' guide and includes a description of the overall digital program code, individual subroutines and a description of required program input and generated program output. Volume 3 presents the results of selected demonstration problems that illustrate all program system capabilities
- …