108 research outputs found

    Estimating the reduction time of quantum states

    Full text link
    An effective description of microscopic measurements is given, in which the precise moment of probing is not determined. Within this scenario we propose a scheme that relies on an "attempt" to make a forbidden simultaneous measurement of two incompatible observables. Although bound to failure in what concerns this goal, the process can lead to information on a possible non-vanishing time scale δt\delta t involved in the collapsing of the wave function, even if the duration Δt\Delta t of the individual measurements is much larger than δt\delta t.Comment: 5 page

    Affine arithmetic-based methodology for energy hub operation-scheduling in the presence of data uncertainty

    Get PDF
    In this study, the role of self-validated computing for solving the energy hub-scheduling problem in the presence of multiple and heterogeneous sources of data uncertainties is explored and a new solution paradigm based on affine arithmetic is conceptualised. The benefits deriving from the application of this methodology are analysed in details, and several numerical results are presented and discussed

    Analytical approach to viscous fingering in a cylindrical Hele-Shaw cell

    Full text link
    We report analytical results for the development of the viscous fingering instability in a cylindrical Hele-Shaw cell of radius a and thickness b. We derive a generalized version of Darcy's law in such cylindrical background, and find it recovers the usual Darcy's law for flow in flat, rectangular cells, with corrections of higher order in b/a. We focus our interest on the influence of cell's radius of curvature on the instability characteristics. Linear and slightly nonlinear flow regimes are studied through a mode-coupling analysis. Our analytical results reveal that linear growth rates and finger competition are inhibited for increasingly larger radius of curvature. The absence of tip-splitting events in cylindrical cells is also discussed.Comment: 14 pages, 3 ps figures, Revte

    A conjugate for the Bargmann representation

    Full text link
    In the Bargmann representation of quantum mechanics, physical states are mapped into entire functions of a complex variable z*, whereas the creation and annihilation operators a^\hat{a}^\dagger and a^\hat{a} play the role of multiplication and differentiation with respect to z*, respectively. In this paper we propose an alternative representation of quantum states, conjugate to the Bargmann representation, where the roles of a^\hat{a}^\dagger and a^\hat{a} are reversed, much like the roles of the position and momentum operators in their respective representations. We derive expressions for the inner product that maintain the usual notion of distance between states in the Hilbert space. Applications to simple systems and to the calculation of semiclassical propagators are presented.Comment: 15 page
    corecore