13 research outputs found

    Using an Electronic Monitoring System to Link Offspring Provisioning and Foraging Behavior of a Wild Passerine

    Full text link
    Although the costs of parental care are at the foundations of optimal-parental-investment theory, our understanding of the nature of the underlying costs is limited by the difficulty of measuring variation in foraging effort. We simultaneously measured parental provisioning and foraging behavior in a free-living population of Zebra Finches (Taeniopygia guttata) using an electronic monitoring system. We fitted 145 adults with a passive transponder tag and remotely recorded their visits to nest boxes and feeders continuously over a 2-month period. After validating the accuracy of this monitoring system, we studied how provisioning and foraging activities varied through time (day and breeding cycle) and influenced the benefits (food received by the offspring) and costs (interclutch interval) of parental care. The provisioning rates of wild Zebra Finches were surprisingly low, with an average of only one visit per hour throughout the day. This was significantly lower than those reported for this model species in captivity and for most other passerines in the wild. Nest visitation rate only partially explained the amount of food received by the young, with parental foraging activity, including the minimum distance covered on foraging trips, being better predictors. Parents that sustained higher foraging activity and covered more distance during the first breeding attempt took longer to renest. These results demonstrate that in some species matching foraging activity with offspring provisioning may provide a better estimate of the true investment that individuals commit to a reproductive attempt

    Wild at heart? : differential maternal investment in wild and domesticated zebra finches (Taeniopygia guttata)

    Get PDF
    Over the past twenty years there has been an exponential increase in the investigation of maternal effects. Understanding the adaptive function of maternal allocation strategies is integral to interpreting the evolutionary outcomes of sexual selection. Thus, model animal systems that facilitate experimental manipulation and controlled investigation of the physiological and behavioural mechanisms underlying maternal effects are important to evolutionary biologists. The zebra finch (Taeniopygia guttata) has been used as a model to investigate avian life-history, signalling behaviour, neurophysiology, mate choice, and more recently, maternal effects. However, a potentially influential and rarely addressed problem with this species is the process of domestication. Within this thesis we aimed to both test current predominant maternal allocation hypotheses, but for the first time in both domesticated and wild zebra finches. Chapter 2 develops on earlier work using domesticated zebra finches that has demonstrated differential allocation of maternally derived yolk androgens and antioxidants in eggs dependent on paternal attractiveness. This chapter specifically tests the ratio of these two yolk resources within individual eggs and shows that the balance of androgens to antioxidants varies by offspring sex and paternal attractiveness. Specifically, we found that mothers allocated a smaller androgen to antioxidant ratio to daughters when paired to green ringed (unattractive) males compared to red ringed (attractive) males. This pattern was reversed for sons, where mothers allocated a larger ratio of androgen to antioxidant when paired to red ringed (attractive) compared to green ringed (unattractive) males. We also show that brood sex ratio depended on both female condition and male attractiveness. It is concluded that investigating female allocation of individual resources within egg yolks may lead to incorrect assumptions on offspring fitness consequences, and that individual female state is an important consideration when predicting a resource allocation strategy. Throughout this thesis colour bands are used as a method to manipulate male attractiveness. In chapter 3 the influence of these bands was further tested to elucidate whether they affect male behaviour or quality. Wild birds were used for this chapter as preferences for bands based on colour have only once been demonstrated in wild birds and it was felt this should also be replicated. We confirmed a female preference for males based on colour bands worn in mate choice trials, with red bands preferred over green. Interestingly, we also found that colour of bands worn by males for an extended period in the single sex aviary influenced both their song rate and condition. Males that had worn red bands sang more in mate choice trials than both green banded or un-banded males. In addition red banded males were found to be in significantly better physical condition. These data suggest that earlier experiments in which it has been assumed that colour bands do not manipulate any form of intrinsic male quality should be re-evaluated. The final two data chapters, 4 and 5, return to investigating maternal allocation in response to male attractiveness, but for the first time in wild birds. Chapter 4 presents an experiment that was conducted on a wild, nest box breeding population of birds. Maternal resources allocation was investigated in both an experimental manipulation of male attractiveness, and also by correlating resource allocation with paternal phenotypic traits. A limited sample size meant few conclusions could be drawn from the experimental study, but significant positive correlations were found between both egg size and yolk testosterone (T) concentration and male phenotypic traits. This suggested that wild zebra finches may follow a positive investment strategy but requires further investigation. In chapter 5 experiments were repeated on wild birds that had been brought into captivity, to allow both an improved sample size and further control of influential environmental features. Again, female allocation strategies are tested using colour bands to manipulate male attractiveness, to allow direct comparisons with work on domesticated zebra finches. We found that females laid significantly heavier eggs for attractive compared to unattractive males, supporting the positive investment hypothesis. In addition we found an interaction between offspring size and paternal attractiveness treatment, with daughters of red banded (attractive) males being smaller than sons. This experiment is the first to demonstrate the influence of colour bands on maternal allocation in wild zebra finches and also provides further support for the positive investment hypothesis in this species. The final chapter discusses how overall patterns of female allocation were shown to be similar among wild and domesticated populations. It is concluded that demonstrated variations between populations and/or contexts reported in these studies cannot be explained by inherent differences between wild and domesticated individuals. Thus, the zebra finch remains a robust and reliable model for testing the evolution of avian maternal allocation strategies

    Within-year differences in reproductive investment in laboratory zebra finches (Taeniopygia guttata), an opportunistically breeding bird

    No full text
    Reproduction in opportunistically breeding bird species has traditionally been considered non-seasonal with individuals taking advantage of favourable environmental conditions as they arise. However, some studies imply that this opportunistic breeding may be superimposed on an underlying seasonality, which has effects on the readiness to breed when conditions are favourable. The zebra finch (Taeniopygia guttata) is the classic opportunistic breeder and widely used as such in studies. In a series of laboratory-based breeding experiments, we found evidence to suggest that there are seasonal differences in maternal reproductive investment in the zebra finch even when photoperiod, temperature, relative humidity and diet were held constant. Females showed highly significant seasonal differences in clutch size and egg mass with laying order. Clutch size showed a spring/summer peak typical of multi-brooded species in the wild. There was also a significant increase in egg mass with laying order in all seasons except winter. This variation in breeding parameters with season may allow females to adjust investment depending on the potential fitness returns from a given reproductive attempt. These findings also raise a warning about interpreting results of multiple zebra finch breeding experiments that have been carried out in different seasons

    Using an electronic monitoring system to link offspring provisioning and foraging behavior of a wild passerine

    No full text
    -Although the costs of parental care are at the foundations of optimal-parental-investment theory, our understanding of the nature of the underlying costs is limited by the difficulty of measuring variation in foraging effort. We simultaneously measured parental provisioning and foraging behavior in a free-living population of Zebra Finches (Taeniopygia guttata) using an electronic monitoring system. We fitted 145 adults with a passive transponder tag and remotely recorded their visits to nest boxes and feeders continuously over a 2-month period. After validating the accuracy of this monitoring system, we studied how provisioning and foraging activities varied through time (day and breeding cycle) and influenced the benefits (food received by the offspring) and costs (interclutch interval) of parental care. The provisioning rates of wild Zebra Finches were surprisingly low, with an average of only one visit per hour throughout the day. This was significantly lower than those reported for this model species in captivity and for most other passerines in the wild. Nest visitation rate only partially explained the amount of food received by the young, with parental foraging activity, including the minimum distance covered on foraging trips, being better predictors. Parents that sustained higher foraging activity and covered more distance during the first breeding attempt took longer to renest. These results demonstrate that in some species matching foraging activity with offspring provisioning may provide a better estimate of the true investment that individuals commit to a reproductive attempt. Received 3 May 2010, accepted 15 October 2010

    Artificial ornaments manipulate intrinsic male quality in wild-caught zebra finches (Taeniopygia guttata)

    Full text link
    The addition of red and green color bands is a commonly used method for manipulating male attractiveness in the zebra finch (Taeniopygia guttata), providing insight into the study of maternal investment and sexual selection. The addition of artificial ornaments has been assumed to manipulate a females’ perception of the male, rather than affecting intrinsic qualities of the male himself. Here, however, we reveal that the artificial band color worn by a male changes his body mass, condition, and courtship display rate. Males wearing red color bands in aviaries prior to mate-choice trials had a significantly higher song rate during trials than those wearing green color bands, alongside a significant increase in mass change and condition. Male song rate was found to significantly correlate with female preference alongside a female preference for red-banded males. However, male song rate in turn increased when female response was positive, suggesting a social feedback between the interacting birds. Our data suggest the presence of socially mediated feedback mechanisms whereby the artificial increase in attractiveness or dominance of a male directly affects other aspects of his attractiveness. Therefore, housing birds in social groups while manipulating attractiveness can directly influence other male qualities and should be accounted for by future studies

    Recent Advances in Systems and Network Medicine: Meeting Report from the First International Conference in Systems and Network Medicine

    No full text
    The First International Conference in Systems and Network Medicine gathered together 200 global thought leaders, scientists, clinicians, academicians, industry and government experts, medical and graduate students, postdoctoral scholars and policymakers. Held at Georgetown University Conference Center in Washington D.C. on September 11-13, 2019, the event featured a day of pre-conference lectures and hands-on bioinformatic computational workshops followed by two days of deep and diverse scientific talks, panel discussions with eminent thought leaders, and scientific poster presentations. Topics ranged from: Systems and Network Medicine in Clinical Practice; the role of -omics technologies in Health Care; the role of Education and Ethics in Clinical Practice, Systems Thinking, and Rare Diseases; and the role of Artificial Intelligence in Medicine. The conference served as a unique nexus for interdisciplinary discovery and dialogue and fostered formation of new insights and possibilities for health care systems advances
    corecore