23 research outputs found

    A research on the use of metaphor design in promoting brand identity

    Get PDF
    Every new brand which competes and increases its market share needs some tools and methods to be applied to its products. The objective of this research is to investigate the use of metaphor as a tool for peak shift effect and its impact on memory, which can be effective in promoting brand identity from a customer perspective. In this respect, this research uses a combination of memory test and comparison of two objects method. Therefore, the research method was according to environment specifications. The results indicated that the products having metaphor in comparison to products with no metaphor has an effective role in peak shift and image persistence and its name in user’s mind. In conclusion, the brand identity can be promoted in a variety of ways, among which the design of metaphor, which is related to product design and graphic design, is one of these ways

    Analytical development and optimization of a graphene-solution interface capacitance model

    Get PDF
    Graphene, which as a new carbon material shows great potential for a range of applications because of its exceptional electronic and mechanical properties, becomes a matter of attention in these years. The use of graphene in nanoscale devices plays an important role in achieving more accurate and faster devices. Although there are lots of experimental studies in this area, there is a lack of analytical models. Quantum capacitance as one of the important properties of field effect transistors (FETs) is in our focus. The quantum capacitance of electrolyte-gated transistors (EGFETs) along with a relevant equivalent circuit is suggested in terms of Fermi velocity, carrier density, and fundamental physical quantities. The analytical model is compared with the experimental data and the mean absolute percentage error (MAPE) is calculated to be 11.82. In order to decrease the error, a new function of E composed of α and ÎČ parameters is suggested. In another attempt, the ant colony optimization (ACO) algorithm is implemented for optimization and development of an analytical model to obtain a more accurate capacitance model. To further confirm this viewpoint, based on the given results, the accuracy of the optimized model is more than 97% which is in an acceptable range of accurac

    Molecular Atlas of Postnatal Mouse Heart Development

    Get PDF
    Background The molecular mechanisms mediating postnatal loss of cardiac regeneration in mammals are not fully understood. We aimed to provide an integrated resource of mRNA, protein, and metabolite changes in the neonatal heart for identification of metabolism‐related mechanisms associated with cardiac regeneration. Methods and Results Methods and results Mouse ventricular tissue samples taken on postnatal day 1 (P01), P04, P09, and P23 were analyzed with RNA sequencing and global proteomics and metabolomics. Gene ontology analysis, KEGG pathway analysis, and fuzzy c‐means clustering were used to identify up‐ or downregulated biological processes and metabolic pathways on all 3 levels, and Ingenuity pathway analysis (Qiagen) was used to identify upstream regulators. Differential expression was observed for 8547 mRNAs and for 1199 of 2285 quantified proteins. Furthermore, 151 metabolites with significant changes were identified. Differentially regulated metabolic pathways include branched chain amino acid degradation (upregulated at P23), fatty acid metabolism (upregulated at P04 and P09; downregulated at P23) as well as the HMGCS (HMG‐CoA [hydroxymethylglutaryl‐coenzyme A] synthase)–mediated mevalonate pathway and ketogenesis (transiently activated). Pharmacological inhibition of HMGCS in primary neonatal cardiomyocytes reduced the percentage of BrdU‐positive cardiomyocytes, providing evidence that the mevalonate and ketogenesis routes may participate in regulating the cardiomyocyte cell cycle. Conclusions This study is the first systems‐level resource combining data from genomewide transcriptomics with global quantitative proteomics and untargeted metabolomics analyses in the mouse heart throughout the early postnatal period. These integrated data of molecular changes associated with the loss of cardiac regeneration may open up new possibilities for the development of regenerative therapiesPeer reviewe

    Radiomics and machine learning of multisequence multiparametric prostate MRI: Towards improved non-invasive prostate cancer characterization

    Get PDF
    Purpose To develop and validate a classifier system for prediction of prostate cancer (PCa) Gleason score (GS) using radiomics and texture features of T2-weighted imaging (T2w), diffusion weighted imaging (DWI) acquired using high b values, and T2-mapping (T2). Methods T2w, DWI (12 b values, 0–2000 s/mm2), and T2 data sets of 62 patients with histologically confirmed PCa were acquired at 3T using surface array coils. The DWI data sets were post-processed using monoexponential and kurtosis models, while T2w was standardized to a common scale. Local statistics and 8 different radiomics/texture descriptors were utilized at different configurations to extract a total of 7105 unique per-tumor features. Regularized logistic regression with implicit feature selection and leave pair out cross validation was used to discriminate tumors with 3+3 vs >3+3 GS. Results In total, 100 PCa lesions were analysed, of those 20 and 80 had GS of 3+3 and >3+3, respectively. The best model performance was obtained by selecting the top 1% features of T2w, ADCm and K with ROC AUC of 0.88 (95% CI of 0.82–0.95). Features from T2 mapping provided little added value. The most useful texture features were based on the gray-level co-occurrence matrix, Gabor transform, and Zernike moments. Conclusion Texture feature analysis of DWI, post-processed using monoexponential and kurtosis models, and T2w demonstrated good classification performance for GS of PCa. In multisequence setting, the optimal radiomics based texture extraction methods and parameters differed between different image types. </div

    New Developments and Environmental Applications of Drones: Proceedings of FinDrones 2020

    No full text
    Vehicles with prolonged autonomous missions have to maintain environment awareness by simultaneous localization and mapping (SLAM). Closed-loop correction used for SLAM consistency maintenance is proposed to be substituted by interpolation in rigid body transformation space in order to systematically reduce the accumulated error over different scales. The computation is divided into an edge-computed lightweight SLAM and iterative corrections in the cloud environment. Tree locations in the forest environment are sent via a potentially limited communication bandwidth. Data from a real forest site is used in the verification of the proposed algorithm. The algorithm adds new iterative closest point (ICP) cases to the initial SLAM and measures the resulting map quality by the mean of the root mean squared error (RMSE) of individual tree clusters. Adding 4% more match cases yields the mean RMSE of 0.15 m on a large site with 180 m odometric distance.</p
    corecore