19 research outputs found
Design and Development of a Novel Expanding Pedicle Screw for Use in the Osteoporotic Lumbar Spine
Pedicle screws are commonly utilized in spinal surgery; however, traditional designs often do not provide adequate fixation in osteoporotic spines. The objective of this thesis was to develop a novel expanding screw for use in osteoporotic lumbar pedicles. Helical screws capable of expanding post insertion were built on a rapid prototype machine. A materials testing machine performed axial load to failure tests in both Sawbones and cadaveric specimens comparing the new design to traditional screws (rate = 10mm/min to 20 mm). Output parameters included yield load, ultimate load, stiffness, energy to failure and total energy. The expanding screw showed a 36% increase in total energy (p=0.02), but no other differences were identified. Based on this initial design, the expandable pedicle screws failed to demonstrate improved screw pullout; however, differences may be observed in other loading modes (i.e., toggle) and further design modifications and improvements in post-build machining may provide beneficial enhancements
Opioid use trends in patients undergoing elective thoracic and lumbar spine surgery
© 2020 Joule Inc. or its licensors Background: Opioid use in North America has increased rapidly in recent years. Preoperative opioid use is associated with several negative outcomes. Our objectives were to assess patterns of opioid use over time in Canadian patients who undergo spine surgery and to determine the effect of spine surgery on 1year postoperative opioid use. Methods: A retrospective analysis was performed on prospectively collected data from the Canadian Spine Outcomes and Research Network for patients undergoing elective thoracic and lumbar surgery. Selfreported opioid use at baseline, before surgery and at 1 year after surgery was compared. Baseline opioid use was compared by age, sex, radiologic diagnosis and presenting complaint. All patients meeting eligibility criteria from 2008 to 2017 were included. Results: A total of 3134 patients provided baseline opioid use data. No significant change in the proportion of patients taking daily (range 32.3%–38.2%) or intermittent (range 13.7%–22.5%) opioids was found from pre2014 to 2017. Among patients who waited more than 6 weeks for surgery, the frequency of opioid use did not differ significantly between the baseline and preoperative time points. Significantly more patients using opioids had a chief complaint of back pain or radiculopathy than neurogenic claudication (p \u3c 0.001), and significantly more were under 65 years of age than aged 65 years or older (p \u3c 0.001). Approximately 41% of patients on daily opioids at baseline remained so at 1 year after surgery. Conclusion: These data suggest that additional opioid reduction strategies are needed in the population of patients undergoing elective thoracic and lumbar spine surgery. Spine surgeons can be involved in identifying patients taking opioids preoperatively, emphasizing the risks of continued opioid use and referring patients to appropriate evidencebased treatment programs
Patients undergoing surgery for lumbar spinal stenosis experience unique courses of pain and disability: A group-based trajectory analysis
© 2019 Hebert et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Objective Identify patient subgroups defined by trajectories of pain and disability following surgery for degenerative lumbar spinal stenosis, and investigate the construct validity of the subgroups by evaluating for meaningful differences in clinical outcomes. Methods We recruited patients with degenerative lumbar spinal stenosis from 13 surgical spine centers who were deemed to be surgical candidates. Study outcomes (leg and back pain numeric rating scales, modified Oswestry disability index) were measured before surgery, and after 3, 12, and 24 months. Group-based trajectory models were developed to identify trajectory subgroups for leg pain, back pain, and pain-related disability. We examined for differences in the proportion of patients achieving minimum clinically important change in pain and disability (30%) and clinical success (50% reduction in disability or Oswestry score ≤22) 12 months from surgery. Results Data from 548 patients (mean[SD] age = 66.7[9.1] years; 46% female) were included. The models estimated 3 unique trajectories for leg pain (excellent outcome = 14.4%, good outcome = 49.5%, poor outcome = 36.1%), back pain (excellent outcome = 13.1%, good outcome = 45.0%, poor outcome = 41.9%), and disability (excellent outcome = 30.8%, fair outcome = 40.1%, poor outcome = 29.1%). The construct validity of the trajectory subgroups was confirmed by between-trajectory group differences in the proportion of patients meeting thresholds for minimum clinically important change and clinical success after 12 postoperative months (p \u3c .001). Conclusion Subgroups of patients with degenerative lumbar spinal stenosis can be identified by their trajectories of pain and disability following surgery. Although most patients experienced important reductions in pain and disability, 29% to 42% of patients were classified as members of an outcome trajectory subgroup that experienced little to no benefit from surgery. These findings may inform appropriate expectation setting for patients and clinicians and highlight the need for better methods of treatment selection for patients with degenerative lumbar spinal stenosis
Use of incisional negative pressure wound therapy in orthopedics
This review article summarizes the results of currently available literature on use of incisional negative pressure wound therapy for primary closure of orthopedic incisions. Post-operative wound complications place a heavy toll on patients and the health care system. Patients with post-operative wound complications often require readmission, repeat surgery, prolonged hospitalization, and diminished outcomes. The financial burden on the health care system for surgical site infection, the most common post-operative wound complication, varies from 100,000 per patient, representing a nearly 300% increase in health care costs.The role of incisional negative pressure wound therapy is currently being investigated in reducing post-operative wound complications. However, the subject is still novel and based on our literature search, only 11 papers discuss the role of incisional negative pressure wound therapy in orthopedic surgery, with only one paper providing level 1 evidence. However, despite the paucity of sufficient clinical trials, it appears that most reports suggest positive outcomes with use of negative pressure wound therapy.<div><br></div><div><div><b>DOI: 10.4103/2542-4157.219376</b></div><div><b><br></b></div><div><b>How to cite this article:</b></div><div><b>Singh S, Urquhart JC, Bailey CS, Rasoulinejad P. Use of incisional negative pressure wound therapy in orthopedics. Clin Trials Orthop Disord 2017;2:153-9</b></div></div
A systematic review of metal ion concentrations following instrumented spinal fusion
© 2020, Scoliosis Research Society. Purpose: Metallic spinal implants undergo wear and corrosion which liberates ionic or particulate metal debris. The purpose of this study was to identify and review studies that report the concentration of metal ions following multi-level spinal fusion and to evaluate the impact on clinical outcomes. Methods: Databases (PubMed, EBSCO MEDLINE) were searched up to August 2019 for studies in English-language assessing metal ion levels [chromium (Cr), titanium (Ti), nickel (Ni)] in whole blood, serum, or plasma after spinal fusion using a specific search string. Study, patient, and implant characteristics, method of analysis, metal ion concentration, as well as clinical and radiographic results was extracted. Results: The systematic search yielded 18 studies encompassing 653 patients. 9 studies reported Ti ions, eight reported Cr, and six reported Ni. Ti levels were elevated compared to controls/reference range/preoperative baseline in seven studies with the other two reporting no difference. Cr levels were elevated compared to controls/reference range in seven studies with one reporting no difference. Ni levels showed no difference from controls/reference range in four studies with one reporting above normal and another elevated compared to controls. Radiographic evidence of corrosion, implant failure, pseudarthrosis, revision surgery and adverse reaction reporting was highly variable. Conclusion: Metal ions are elevated after instrumented spinal fusion; notably Cr levels from stainless steel implants and Ti from titanium implants. The association between clinical and radiographic outcomes remain uncertain but is concerning. Further research with standardized reporting over longer follow-up periods is indicated to evaluate the clinical impact and minimizing risk
Automated comprehensive Adolescent Idiopathic Scoliosis assessment using MVC-Net
© 2018 Automated quantitative estimation of spinal curvature is an important task for the ongoing evaluation and treatment planning of Adolescent Idiopathic Scoliosis (AIS). It solves the widely accepted disadvantage of manual Cobb angle measurement (time-consuming and unreliable) which is currently the gold standard for AIS assessment. Attempts have been made to improve the reliability of automated Cobb angle estimation. However, it is very challenging to achieve accurate and robust estimation of Cobb angles due to the need for correctly identifying all the required vertebrae in both Anterior-posterior (AP) and Lateral (LAT) view x-rays. The challenge is especially evident in LAT x-ray where occlusion of vertebrae by the ribcage occurs. We therefore propose a novel Multi-View Correlation Network (MVC-Net) architecture that can provide a fully automated end-to-end framework for spinal curvature estimation in multi-view (both AP and LAT) x-rays. The proposed MVC-Net uses our newly designed multi-view convolution layers to incorporate joint features of multi-view x-rays, which allows the network to mitigate the occlusion problem by utilizing the structural dependencies of the two views. The MVC-Net consists of three closely-linked components: (1) a series of X-modules for joint representation of spinal structure (2) a Spinal Landmark Estimator network for robust spinal landmark estimation, and (3) a Cobb Angle Estimator network for accurate Cobb Angles estimation. By utilizing an iterative multi-task training algorithm to train the Spinal Landmark Estimator and Cobb Angle Estimator in tandem, the MVC-Net leverages the multi-task relationship between landmark and angle estimation to reliably detect all the required vertebrae for accurate Cobb angles estimation. Experimental results on 526 x-ray images from 154 patients show an impressive 4.04° Circular Mean Absolute Error (CMAE) in AP Cobb angle and 4.07° CMAE in LAT Cobb angle estimation, which demonstrates the MVC-Net\u27s capability of robust and accurate estimation of Cobb angles in multi-view x-rays. Our method therefore provides clinicians with a framework for efficient, accurate, and reliable estimation of spinal curvature for comprehensive AIS assessment
Patterns of C-2 fracture in the elderly: comparison of etiology, treatment, and mortality among specific fracture types
OBJECTIVE Previous studies have focused on Type II odontoid fractures and have failed to report on the effect of other C-2 fracture types on treatment and outcome. The purpose of this study was to compare patient characteristics, cause of injury, predisposing factors to fracture, treatments, and mortality rates among C-2 fracture types in a cohort of elderly patients 70 years of age and older. METHODS A retrospective cohort study design was used. Patients who sustained a C-2 fracture between 2002 and 2011 and who were admitted to the authors’ Level 1 trauma center were identified using the Discharge Abstract Database and the International Statistical Classification of Diseases and Related Health Problems (ICD-10) code S12.1. Fractures were classified as odontoid Type I, II, or III; hangman’s; C-2 complex (hangman’s appearance on sagittal images, Type III odontoid on coronal cuts); and other (miscellaneous). Age, sex, predisposing factors to falls, cause of injury, treatment, presence of autofusion in the subaxial cervical spine, and mortality rates were compared between fracture patterns. RESULTS One hundred forty-one patients were included; their mean age was 82 years. Fractures included Type II odontoid (57%), complex (19%), Type III odontoid (11%), hangman’s (8%), and other (5%). Falls from a standing height accounted for 47% of injuries, and 65% of patients had ≥ 3 risk factors for falls. Subaxial autofusion was more common in odontoid fractures (p = 0.002). Treatment was mainly nonoperative (p \u3c 0.0001). The 1-year mortality rate was 27%. Four patients died of spinal cord injury. CONCLUSIONS Although not as common as Type II odontoid fractures, other C-2 fractures including hangman’s, complex, and Type III odontoid fractures accounted for close to half of the injuries in the study cohort. There were few differences between the fracture types with respect to cause of injury, predisposing factors, or mortality rate. However, surgical treatment was more common for Type II odontoid fractures
Incorporating ligament laxity in a finite element model for the upper cervical spine
© 2017 Elsevier Inc. Background Context Predicting physiological range of motion (ROM) using a finite element (FE) model of the upper cervical spine requires the incorporation of ligament laxity. The effect of ligament laxity can be observed only on a macro level of joint motion and is lost once ligaments have been dissected and preconditioned for experimental testing. As a result, although ligament laxity values are recognized to exist, specific values are not directly available in the literature for use in FE models. Purpose The purpose of the current study is to propose an optimization process that can be used to determine a set of ligament laxity values for upper cervical spine FE models. Furthermore, an FE model that includes ligament laxity is applied, and the resulting ROM values are compared with experimental data for physiological ROM, as well as experimental data for the increase in ROM when a Type II odontoid fracture is introduced. Design/Setting The upper cervical spine FE model was adapted from a 50th percentile male full-body model developed with the Global Human Body Models Consortium (GHBMC). FE modeling was performed in LS-DYNA and LS-OPT (Livermore Software Technology Group) was used for ligament laxity optimization. Methods Ordinate-based curve matching was used to minimize the mean squared error (MSE) between computed load-rotation curves and experimental load-rotation curves under flexion, extension, and axial rotation with pure moment loads from 0 to 3.5 Nm. Lateral bending was excluded from the optimization because the upper cervical spine was considered to be primarily responsible for flexion, extension, and axial rotation. Based on recommendations from the literature, four varying inputs representing laxity in select ligaments were optimized to minimize the MSE. Funding was provided by the Natural Sciences and Engineering Research Council of Canada as well as GHMBC. The present study was funded by the Natural Sciences and Engineering Research Council of Canada to support the work of one graduate student. There are no conflicts of interest to be reported. Results The MSE was reduced to 0.28 in the FE model with optimized ligament laxity compared with an MSE 0f 4.16 in the FE model without laxity. In all load cases, incorporating ligament laxity improved the agreement between the ROM of the FE model and the ROM of the experimental data. The ROM for axial rotation and extension was within one standard deviation of the experimental data. The ROM for flexion and lateral bending was outside one standard deviation of the experimental data, but a compromise was required to use one set of ligament laxity values to achieve a best fit to all load cases. Atlanto-occipital motion was compared as a ratio to overall ROM, and only in extension did the inclusion of ligament laxity not improve the agreement. After a Type II odontoid fracture was incorporated into the model, the increase in ROM was consistent with experimental data from the literature. Conclusions The optimization approach used in this study provided values for ligament laxities that, when incorporated into the FE model, generally improved the ROM response when compared with experimental data. Successfully modeling a Type II odontoid fracture showcased the robustness of the FE model, which can now be used in future biomechanics studies
Direct estimation of spinal cobb angles by structured multi-output regression
© Springer International Publishing AG 2017. The Cobb angle that quantitatively evaluates the spinal curvature plays an important role in the scoliosis diagnosis and treatment. Conventional measurement of these angles suffers from huge variability and low reliability due to intensive manual intervention. However, since there exist high ambiguity and variability around boundaries of vertebrae, it is challenging to obtain Cobb angles automatically. In this paper, we formulate the estimation of the Cobb angles from spinal X-rays as a multi-output regression task. We propose structured support vector regression (S2VR) to jointly estimate Cobb angles and landmarks of the spine in X-rays in one single framework. The proposed S2VR can faithfully handle the nonlinear relationship between input images and quantitative outputs, while explicitly capturing the intrinsic correlation of outputs.We introduce the manifold regularization to exploit the geometry of the output space. We propose learning the kernel in S2VR by kernel alignment to enhance its discriminative ability. The proposed method is evaluated on the spinal X-rays dataset of 439 scoliosis subjects, which achieves the inspiring correlation coefficient of 92.76% with ground truth obtained manually by human experts and outperforms two baseline methods. Our method achieves the direct estimation of Cobb angles with high accuracy, indicating its great potential in clinical use