3 research outputs found

    Selective and Robust Ru Catalyst for the Aqueous Phase Aerobic Oxidation of Furfural to 2‑Furoic Acid

    No full text
    Synthesis of 2-furoic acid (FURA) via oxidation of furfural (FAL) is vital in evolving the biorefinery concept as FURA has numerous important applications in the pharmaceuticals and optic areas. Though few works on this reaction are done, those are marred with shortcomings such as the nonrecyclability of catalyst, dilute solutions, lower yields, or use of H2O2 as an oxidizing agent. Herein, we report catalytic aqueous phase oxidation of FAL to FURA using molecular oxygen as an oxidizing agent. For the synthesis of FURA, various catalysts with a combination of metal (Pt, Pd, Ru) and supports (carbon, Al2O3) were prepared and characterized by multiple techniques (X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET), X-ray photoelectron spectroscopy (XPS)). Oxidation of FAL carried out over 5 wt % Ru/C catalyst in the presence of Na2CO3 yielded 83% of FURA at 120 °C and 15 bar oxygen pressure. The catalyst could show potential for reusability as similar activity was achieved after subjecting the spent catalyst to mild reduction treatment (150 °C). Studies on the effects of temperature, pressure, and time could help accomplish enhanced yields of FURA. Additionally, learning about the effect of base (weak/strong/solid) revealed that due to the weak basicity of Na2CO3, higher yields could be achieved by maintaining approximately a pH of 11, which is optimal for suppressing side reactions. Under the given conditions, FURA is stable (>90%) and also adsorption studies divulge that it is immediately removed from the catalyst surface, and hence higher yields could be achieved in our catalytic system. Using the initial rates methodology, an activation energy of 21.91 kJ mol–1 was derived and also a high turn over frequency (TOF) (85.9 h–1) was observed under optimized conditions

    Efficient, Stable, and Reusable Silicoaluminophosphate for the One-Pot Production of Furfural from Hemicellulose

    No full text
    Development of stable, reusable, and water-tolerant solid acid catalysts in the conversion of polysaccharides to give value-added chemicals is vital because catalysts are prone to undergo morphological changes during the reactions. With the anticipation that silicoaluminophosphate (SAPO) catalysts will have higher hydrothermal stability, those were synthesized, characterized, and employed in a one-pot conversion of hemicellulose. SAPO-44 catalyst at 170 °C within 8 h could give 63% furfural yield with 88% mass balance and showed similar activity up to at least 8 catalytic cycles. The morphological studies revealed that SAPO catalysts having hydrophilic characteristics are stable under reaction conditions

    Lignin Depolymerization into Aromatic Monomers over Solid Acid Catalysts

    No full text
    It is imperative to develop an efficient and environmentally benign pathway to valorize profusely available lignin, a component of nonedible lignocellulosic materials, into value-added aromatic monomers, which can be used as fuel additives and platform chemicals. To convert lignin, earlier studies used mineral bases (NaOH, CsOH) or supported metal catalysts (Pt, Ru, Pd, Ni on C, SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, etc.) under a hydrogen atmosphere, but these methods face several drawbacks such as corrosion, difficulty in catalyst recovery, sintering of metals, loss of activity, etc. Here we show that under an inert atmosphere various solid acid catalysts can efficiently convert six different types of lignins into value-added aromatic monomers. In particular, the SiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub> catalyst gave exceptionally high yields of ca. 60% for organic solvent soluble extracted products with 95 ± 10% mass balance in the depolymerization of dealkaline lignin, bagasse lignin, and ORG and EORG lignins at 250 °C within 30 min. GC, GC-MS, HPLC, LC-MS, and GPC analysis of organic solvent soluble extracted products confirmed the formation of aromatic monomers with ca. 90% selectivity. In the products, confirmation of retention of aromatic nature as present in lignin and the appearance of several functional groups has been carried out by FT-IR and <sup>1</sup>H and <sup>13</sup>C NMR studies. Further, isolation of major products by column chromatography was carried out to obtain aromatic monomers in pure form and their characterization by NMR is presented. A detailed characterization of six different types of lignins obtained from various sources helped in substantiating the catalytic results obtained in these reactions. A meticulous study on fresh and spent catalysts revealed that the amorphous catalysts are preferred to obtain reproducible catalytic results
    corecore