10 research outputs found

    Restoring mussel beds in highly dynamic environments by lowering environmental stressors

    No full text
    Restoration of coastal ecosystem engineers that trap sediment and dampen waves has proven to be difficult, especially in the wave-exposed and eroding areas where they are needed the most. Environmental stressors, such as hydrodynamic stress and predation, can only be overcome if transplanted organisms are able to establish self-facilitating feedbacks. We investigate if the artificial lowering of multiple environmental stressors can be used to give transplanted juveniles the opportunity to form a self-sustainable system and thereby increase their long-term survival on wave-exposed and eroding shores. We designed a large field experiment using juvenile mussels (Mytilus edulis) as model species on a wave-exposed tidal flat in the Oosterschelde estuary (the Netherlands). We tested if the environmental stress caused by a high predation pressure and wave-driven dislodgement could be reduced by a combination of artificial structures such as fences (to exclude predatory crabs), attachment substrates (such as coir-net or oyster shells), and breakwaters. Despite a low overall mussel survival (29%), we found that under strong hydrodynamic conditions, experimental fences and attachment substrates increased the retention of transplanted mussel seed. However, modification of local hydrodynamic conditions using breakwaters did not improve mussel coverage preservation. Overall, this study highlights the potential of using techniques that lower multiple environmental stressors to create a window of opportunity for establishment in highly dynamic ecosystems

    Data presented in the paper "Restoring musselbeds in highly dynamic environments by lowering establishment thresholds"

    No full text
    Using juvenile mussels as model species, we tested in a large field experiment if establishment thresholds caused by a high predation pressure and wave-driven dislodgement could be lowered by a combination of artificial structures such as anti-crab fences, attachment substrates and breakwaters

    Restoring mussel beds in highly dynamic environments by lowering environmental stressors

    Get PDF
    Restoration of coastal ecosystem engineers that trap sediment and dampen waves has proven to be difficult, especially in the wave‐exposed and eroding areas where they are needed the most. Environmental stressors, such as hydrodynamic stress and predation, can only be overcome if transplanted organisms are able to establish self‐facilitating feedbacks. We investigate if the artificial lowering of multiple environmental stressors can be used to give transplanted juveniles the opportunity to form a self‐sustainable system and thereby increase their long‐term survival on wave‐exposed and eroding shores. We designed a large field experiment using juvenile mussels (Mytilus edulis ) as model species on a wave‐exposed tidal flat in the Oosterschelde estuary (the Netherlands). We tested if the environmental stress caused by a high predation pressure and wave‐driven dislodgement could be reduced by a combination of artificial structures such as fences (to exclude predatory crabs), attachment substrates (such as coir‐net or oyster shells) and breakwaters. Despite a low overall mussel survival (29%), we found that under strong hydrodynamic conditions, experimental fences and attachment substrates increased the retention of transplanted mussel seed. However, modification of local hydrodynamic conditions using breakwaters did not improve mussel coverage preservation. Overall, this study highlights the potential of using techniques that lower multiple environmental stressors to create a window of opportunity for establishment in highly dynamic ecosystems

    Restoring mussel beds in highly dynamic environments by lowering environmental stressors

    No full text
    Restoration of coastal ecosystem engineers that trap sediment and dampen waves has proven to be difficult, especially in the wave‐exposed and eroding areas where they are needed the most. Environmental stressors, such as hydrodynamic stress and predation, can only be overcome if transplanted organisms are able to establish self‐facilitating feedbacks. We investigate if the artificial lowering of multiple environmental stressors can be used to give transplanted juveniles the opportunity to form a self‐sustainable system and thereby increase their long‐term survival on wave‐exposed and eroding shores. We designed a large field experiment using juvenile mussels (Mytilus edulis ) as model species on a wave‐exposed tidal flat in the Oosterschelde estuary (the Netherlands). We tested if the environmental stress caused by a high predation pressure and wave‐driven dislodgement could be reduced by a combination of artificial structures such as fences (to exclude predatory crabs), attachment substrates (such as coir‐net or oyster shells) and breakwaters. Despite a low overall mussel survival (29%), we found that under strong hydrodynamic conditions, experimental fences and attachment substrates increased the retention of transplanted mussel seed. However, modification of local hydrodynamic conditions using breakwaters did not improve mussel coverage preservation. Overall, this study highlights the potential of using techniques that lower multiple environmental stressors to create a window of opportunity for establishment in highly dynamic ecosystems

    Salt Marsh and Tidal Flat Area Distributions Along Three Estuaries

    Get PDF
    Estuarine landscapes form through interactions between fluvio-coastal processes and ecological processes within the boundaries imposed by hard substrate layers and man-made dikes and dams. As estuaries are ecologically valuable areas, monitoring and quantification of trends in habitats is needed for objective comparison and management. However, datasets of tidal flat and saltmarsh habitats along entire estuaries are scarce. The objective was to compare trends of biogeomorphological areas and habitat transitions along three estuaries in the Netherlands and assess whether these are generally comparable or mainly determined by system-specific histories. We present data for these estuaries obtained by automated classification of false-color aerial imagery. The automated method allows objective mapping of entire estuaries at unprecedented resolution. The estuaries are dominated by subtidal areas and tidal flats. The tidal flats have similar area along the estuaries while saltmarsh area decreases. Collective lengths of ecologically important transitions between saltmarsh, low-energy tidal flats and water differ more between the estuaries. These variations are due to presence of mid-channel bars and shore-connected embayments. Saltmarsh area is mainly determined by the different formation and embankment histories of the estuaries, embayments and side-branches. Much of the past saltmarsh flanking the estuaries was lost due to past land reclamation. In one system, ecologically important low-energy tidal flats are reduced by a sudden decrease of tidal amplitude, causing increase of subtidal area at the cost of intertidal area. Large areas of high-energy tidal flats in one estuary remain unexplained. The automated method can be applied in other estuaries, provided that high-quality areal imagery is available. Extensions of the data to other estuaries would allow for system-scale trend comparison between estuaries of ecologically relevant biogeomorphological characteristics

    Data presented in the paper "Restoring musselbeds in highly dynamic environments by lowering establishment thresholds"

    No full text
    Using juvenile mussels as model species, we tested in a large field experiment if establishment thresholds caused by a high predation pressure and wave-driven dislodgement could be lowered by a combination of artificial structures such as anti-crab fences, attachment substrates and breakwaters

    Restoring mussel beds in highly dynamic environments by lowering environmental stressors

    No full text
    Restoration of coastal ecosystem engineers that trap sediment and dampen waves has proven to be difficult, especially in the wave-exposed and eroding areas where they are needed the most. Environmental stressors, such as hydrodynamic stress and predation, can only be overcome if transplanted organisms are able to establish self-facilitating feedbacks. We investigate if the artificial lowering of multiple environmental stressors can be used to give transplanted juveniles the opportunity to form a self-sustainable system and thereby increase their long-term survival on wave-exposed and eroding shores. We designed a large field experiment using juvenile mussels (Mytilus edulis) as model species on a wave-exposed tidal flat in the Oosterschelde estuary (the Netherlands). We tested if the environmental stress caused by a high predation pressure and wave-driven dislodgement could be reduced by a combination of artificial structures such as fences (to exclude predatory crabs), attachment substrates (such as coir-net or oyster shells), and breakwaters. Despite a low overall mussel survival (29%), we found that under strong hydrodynamic conditions, experimental fences and attachment substrates increased the retention of transplanted mussel seed. However, modification of local hydrodynamic conditions using breakwaters did not improve mussel coverage preservation. Overall, this study highlights the potential of using techniques that lower multiple environmental stressors to create a window of opportunity for establishment in highly dynamic ecosystems

    Salt Marsh and Tidal Flat Area Distributions Along Three Estuaries

    No full text
    Estuarine landscapes form through interactions between fluvio-coastal processes and ecological processes within the boundaries imposed by hard substrate layers and man-made dikes and dams. As estuaries are ecologically valuable areas, monitoring and quantification of trends in habitats is needed for objective comparison and management. However, datasets of tidal flat and saltmarsh habitats along entire estuaries are scarce. The objective was to compare trends of biogeomorphological areas and habitat transitions along three estuaries in the Netherlands and assess whether these are generally comparable or mainly determined by system-specific histories. We present data for these estuaries obtained by automated classification of false-color aerial imagery. The automated method allows objective mapping of entire estuaries at unprecedented resolution. The estuaries are dominated by subtidal areas and tidal flats. The tidal flats have similar area along the estuaries while saltmarsh area decreases. Collective lengths of ecologically important transitions between saltmarsh, low-energy tidal flats and water differ more between the estuaries. These variations are due to presence of mid-channel bars and shore-connected embayments. Saltmarsh area is mainly determined by the different formation and embankment histories of the estuaries, embayments and side-branches. Much of the past saltmarsh flanking the estuaries was lost due to past land reclamation. In one system, ecologically important low-energy tidal flats are reduced by a sudden decrease of tidal amplitude, causing increase of subtidal area at the cost of intertidal area. Large areas of high-energy tidal flats in one estuary remain unexplained. The automated method can be applied in other estuaries, provided that high-quality areal imagery is available. Extensions of the data to other estuaries would allow for system-scale trend comparison between estuaries of ecologically relevant biogeomorphological characteristics
    corecore