12 research outputs found

    Benzo[1,2-b:4,5-b']dithiophene as a weak donor component for push-pull materials displaying thermally activated delayed fluorescence or room temperature phosphorescence

    Get PDF
    In the search for high-performance donor-acceptor type organic compounds displaying thermally activated delayed fluorescence (TADF), triisopropylsilyl-protected benzo[1,2-b:4,5-b']dithiophene (BDT-TIPS) is presented as a novel donor component in combination with two known acceptors: dimethyl-9H-thioxanthenedioxide (TXO2) and dibenzo[a,c]phenazinedicarbonitrile (CNQxP). For a broader comparison, the same acceptors are also combined with the well-studied 9,9-dimethyl-9,10-dihydroacridine (DMAC) donor. Optimized BDT-TIPS-containing structures show calculated dihedral angles of around 50° and well-separated highest occupied and lowest unoccupied molecular orbitals, although varying singlet-triplet energy gaps are observed experimentally. By changing the acceptor moiety and the resulting ordering of excited states, room temperature phosphorescence (RTP) attributed to localized BDT-TIPS emission is observed for TXO2-BDT-TIPS, whereas CNQxP-BDT-TIPS affords a combination of TADF and triplet-triplet annihilation (TTA) delayed emission. In contrast, strong and pure TADF is well-known for TXO2-DMAC, whereas CNQxP-DMAC shows a mixture of TADF and TTA at very long timescales. Overall, BDT-TIPS represents an alternative low-strength donor component for push-pull type TADF emitters that is also able to induce RTP properties

    Difluorodithieno[3,2-a:2′,3′-c]phenazine as a strong acceptor for materials displaying thermally activated delayed fluorescence or room temperature phosphorescence

    Get PDF
    A novel strong electron-acceptor unit, 9,10-difluorodithieno[3,2-a:2′,3′-c]phenazine (DTPz), is synthesized and applied in the design of two donor-acceptor type emitters displaying long-lived delayed emission. Using either 9,9-dimethyl-9,10-dihydroacridine (DMAC) or triisopropyl-substituted benzo[1,2-b:4,5-b']dithiophene (BDT-TIPS) as the donor component, push-pull type chromophores exhibiting charge-transfer emission are obtained and found to afford either thermally activated delayed fluorescence (TADF) for DMAC or room temperature phosphorescence (RTP) for BDT-TIPS

    Structure, Chemical Composition, And Reactivity Correlations During The In Situ Oxidation Of 2-Propanol

    No full text
    Unraveling the complex interaction between catalysts and reactants under operando conditions is a key step toward gaining fundamental insight in catalysis. We report the evolution of the structure and chemical composition of size-selected micellar Pt nanoparticles (∼1 nm) supported on nanocrystalline γ-Al2O3 during the catalytic oxidation of 2-propanol using X-ray absorption fine-structure spectroscopy. Platinum oxides were found to be the active species for the partial oxidation of 2-propanol (\u3c140 °C), while the complete oxidation (\u3e140 °C) is initially catalyzed by oxygen-covered metallic Pt nanoparticles, which were found to regrow a thin surface oxide layer above 200 °C. The intermediate reaction regime, where the partial and complete oxidation pathways coexist, is characterized by the decomposition of the Pt oxide species due to the production of reducing intermediates and the blocking of O2 adsorption sites on the nanoparticle surface. The high catalytic activity and low onset reaction temperature displayed by our small Pt particles for the oxidation of 2-propanol is attributed to the large amount of edge and corner sites available, which facilitate the formation of reactive surface oxides. Our findings highlight the decisive role of the nanoparticle structure and chemical state in oxidation catalytic reactions. © 2011 American Chemical Society

    Bridge control of photophysical properties in benzothiazole-phenoxazine emitters – from thermally activated delayed fluorescence to room temperature phosphorescence

    Get PDF
    The bridging phenyl group in a fluorescent phenoxazine-benzothiazole donor–acceptor dyad is replaced by either a naphthalene or a thiophene moiety to probe the influence of a more extended conjugated system or the presence of a sulfur-containing heteroaromatic spacer on the emissive properties. These seemingly small structural alterations strongly affect the relative positions of the excited states, the fluorescence intensity, and the emission mechanism. Consequently, thermally activated delayed fluorescence (TADF) is observed at longer timescales for the materials with phenyl and naphthalene linkers, whereas the thiophene group promotes room temperature phosphorescence (RTP), both in the solid state and in solution, and enhances singlet oxygen generation. Phosphorescence in solution at ambient temperature from a purely organic molecule without heavy halogen functionalisation is quite rare, and this unique property calls for further specific attention

    Balanced Energy Gaps as a Key Design Rule for Solution‐Phase Organic Room Temperature Phosphorescence

    No full text
    Metal-free organic emitters that display solution-phase room temperature phosphorescence (sRTP) remain exceedingly rare. Here, we investigate the structural and photophysical properties that support sRTP by comparing a recently reported sRTP compound (BTaz-Th-PXZ) to two novel analogous materials, replacing the donor group by either acridine or phenothiazine. The emissive triplet excited state remains fixed in all three cases, while the emissive charge-transfer singlet states (and the calculated paired charge-transfer T2 state) vary with the donor unit. While all three materials show dominant RTP in film, in solution different singlet-triplet and triplet-triplet energy gaps give rise to triplet-triplet annihilation followed by weak sRTP for the new compounds, compared to dominant sRTP throughout for the original PXZ material. Engineering both the sRTP state and higher charge-transfer states therefore emerges as a crucial element in designing emitters capable of sRTP

    Dominant dimer emission provides colour stability for red thermally activated delayed fluorescence emitter

    Get PDF
    Colour purity and stability in multi-donor thermally activated delayed fluorescence (TADF) emitters has significant implications for commercial organic light-emitting diode (OLED) design. The formation of emissive dimer states in the well-known 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) chromophore at elevated dopant concentrations has recently been confirmed both experimentally and via theoretical calculations, indicating that multi-donor emitters such as 4CzIPN might suffer from a lack of colour stability due to the presence of multiple emissive states. This poses a serious issue for OLED manufacturers. In this work, dithieno[3,2-b:2′,3′-d]pyrrole (DTP) is applied as an alternative donor unit in a TADF emitter for the first time. In combination with isophthalonitrile (IPN), the 4CzIPN analogue termed 4DTPIPN is obtained. The strong electron donating nature of the DTP moiety gives rise to a red shift of the emission with respect to that of 4CzIPN. We identify that 4DTPIPN has a very stable emission spectrum throughout all solid-state thin film concentrations and host materials. Rather interestingly, this colour stability is obtained via the formation of dimer/aggregate species that are present even at 0.01 wt% concentration. Unfortunately, the higher colour stability is paired with a low photoluminescence quantum yield, making 4DTPIPN unviable for device applications. Nonetheless, this work shows the importance of dimer contributions, even at dilute doping concentrations. This molecule and study provide important understanding of the aggregation behaviour of small-molecule emitters necessary for the successful application of doped and, especially, non-doped OLED architectures
    corecore