14 research outputs found

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Thermal Characterization of Carbon Fiber-Reinforced Carbon Composites

    No full text
    Carbon fiber-reinforced carbon (C/C) composites consist in a carbon matrix holding carbon or graphite fibers together, whose physical properties are determined not only by those of their individual components, but also by the layer buildup and the material preparation and processing. The complex structure of C/C composites along with the fiber orientation provide an effective means for tailoring their mechanical, electrical, and thermal properties. In this work, we use the Laser Flash Technique to measure the thermal diffusivity and thermal conductivity of C/C composites made up of laminates of weaved bundles of carbon fibers, forming a regular and repeated orthogonal pattern, embedded in a graphite matrix. Our experimental data show that: i) the cross-plane thermal conductivity remains practically constant around (5.3 ± 0.4) W·m −1  K −1 , within the temperature range from 370 K to 1700 K. ii) The thermal diffusivity and thermal conductivity along the cross-plane direction to the fibers axis is about five times smaller than the corresponding ones in the laminates plane. iii) The measured cross-plane thermal conductivity is well described by a theoretical model that considers both the conductive and radiative thermal contributions of the effective thermal conductivity

    Enoyl-Coenzyme A Hydratase and Antigen 85B of Mycobacterium habana Are Specifically Recognized by Antibodies in Sera from Leprosy Patients ▿

    No full text
    Leprosy is an infectious disease caused by Mycobacterium leprae, which is a noncultivable bacterium. One of the principal goals of leprosy research is to develop serological tests that will allow identification and early treatment of leprosy patients. M. habana is a cultivable nonpathogenic mycobacterium and candidate vaccine for leprosy, and several antigens that cross-react between M. leprae and M. habana have been discovered. The aim of the present study was to extend the identification of cross-reactive antigens by identifying M. habana proteins that reacted by immunoblotting with antibodies in serum samples from leprosy patients but not with antibodies in sera from tuberculosis (TB) patients or healthy donors (HDs). A 28-kDa antigen that specifically reacted with sera from leprosy patients was identified. To further characterize this antigen, protein spots were aligned in two-dimensional polyacrylamide gels and Western blots. Spots cut out from the gels were then analyzed by mass spectrometry. Two proteins were identified: enoyl-coenzyme A hydratase (lipid metabolism; ML2498) and antigen 85B (Ag85B; mycolyltransferase; ML2028). These proteins represent promising candidates for the design of a reliable tool for the serodiagnosis of lepromatous leprosy, which is the most frequent form in Mexico

    Instance Selection

    No full text
    corecore