11,078 research outputs found
Poiseuille flow in a nanochannel – use of different thermostats
Poiseuille flow of a liquid in a nano-channel is simulated by molecular dynamics by embedding the fluid particles in a uniform force field. The channel is periodic in y and z directions and along x direction it is bounded by atomic walls. The imposition of the body force generates heat in the system leading to shear heating and a non-uniform temperature rise across the channel. In this nonequilibrium system, one can attempt to control temperature in different ways: velocity rescaling, thermostats or wall-fluid coupling. We evaluate and compare different methods critically by analyzing the fluctuations and time averaged quantities from various simulations. When particles will be inserted into the flow, it is expected that the dynamics will depend on the thermostat chosen. First observations show little influence of the thermostats on single tracer particles – this needs further study
A Multiwavelength Investigation of the Relationship Between 2CG135+1 and LSI+61o 303
We present the results of a multiwavelength monitoring campaign targeting the
gamma-ray source 2CG 135+1 in an attempt to confirm the association of this
object with the radio/Be/X-ray binary system LSI +61o 303. The campaign
included simultaneous radio, optical, infrared, and hard x-ray/gamma-ray
observations carried out with a variety of instruments, covering (not
continously) almost three binary cycles of LSI +61o 303 during the period
April-July 1994. Three separate OSSE observations of the gamma-ray source were
carried out, covering different phases of the radio lightcurve. Hard
X-ray/gamma-ray emission was detected from the direction of 2CG 135+1 during
the first of these OSSE observations. The signal to noise ratio of the OSSE
observations was insufficient to establish a spectral or intensity correlation
of the high-energy emission with simultaneous radio, optical and infrared
emission of LSI +61o 303. We briefly discuss the theoretical implications of
our observations.Comment: 17 pages, 9 figures, 6 tables to be published in Astrophysical
Journal, 10 April 199
INTEGRAL observation of hard X-ray variability of the TeV binary LS5039 / RX J1826.2-1450
LS 5039/RX J1826.2-1450 is one of the few High Mass X-ray binary systems from
which radio and high energy TeV emission has been observed. Moreover,
variability of the TeV emission with orbital period was detected.
We investigate the hard X-ray (25 - 200keV) spectral and timing properties of
the source with the monitoring IBIS/ISGRI instrument on-board the INTEGRAL
satellite.
We present the analysis of INTEGRAL observations for a total of about 3 Msec
exposure time, including both public data and data from the Key Programme. We
search for flux and spectral variability related to the orbital phase.
The source is observed to emit from 25 up to 200 keV and the emission is
concentrated around inferior conjunction. Orbital variability in the hard X-ray
band is detected and established to be in phase with the orbitally modulated
TeV emission observed with H.E.S.S. For this energy range we determine an
average flux for the inferior conjunction phase interval of erg cm s, and a flux upper limit for the
superior conjunction phase interval of erg cm
s (90% conf. level respectively). The spectrum for the inferior
conjunction phase interval follows a power law with an index (90% conf. level).Comment: 4 pages, 4 figures, accepted by A&
- …
