785 research outputs found

    Analysis of Student Behaviour in Habitable Worlds Using Continuous Representation Visualization

    Full text link
    We introduce a novel approach to visualizing temporal clickstream behaviour in the context of a degree-satisfying online course, Habitable Worlds, offered through Arizona State University. The current practice for visualizing behaviour within a digital learning environment has been to generate plots based on hand engineered or coded features using domain knowledge. While this approach has been effective in relating behaviour to known phenomena, features crafted from domain knowledge are not likely well suited to make unfamiliar phenomena salient and thus can preclude discovery. We introduce a methodology for organically surfacing behavioural regularities from clickstream data, conducting an expert in-the-loop hyperparameter search, and identifying anticipated as well as newly discovered patterns of behaviour. While these visualization techniques have been used before in the broader machine learning community to better understand neural networks and relationships between word vectors, we apply them to online behavioural learner data and go a step further; exploring the impact of the parameters of the model on producing tangible, non-trivial observations of behaviour that are suggestive of pedagogical improvement to the course designers and instructors. The methodology introduced in this paper led to an improved understanding of passing and non-passing student behaviour in the course and is widely applicable to other datasets of clickstream activity where investigators and stakeholders wish to organically surface principal patterns of behaviour

    Learning gain differences between ChatGPT and human tutor generated algebra hints

    Full text link
    Large Language Models (LLMs), such as ChatGPT, are quickly advancing AI to the frontiers of practical consumer use and leading industries to re-evaluate how they allocate resources for content production. Authoring of open educational resources and hint content within adaptive tutoring systems is labor intensive. Should LLMs like ChatGPT produce educational content on par with human-authored content, the implications would be significant for further scaling of computer tutoring system approaches. In this paper, we conduct the first learning gain evaluation of ChatGPT by comparing the efficacy of its hints with hints authored by human tutors with 77 participants across two algebra topic areas, Elementary Algebra and Intermediate Algebra. We find that 70% of hints produced by ChatGPT passed our manual quality checks and that both human and ChatGPT conditions produced positive learning gains. However, gains were only statistically significant for human tutor created hints. Learning gains from human-created hints were substantially and statistically significantly higher than ChatGPT hints in both topic areas, though ChatGPT participants in the Intermediate Algebra experiment were near ceiling and not even with the control at pre-test. We discuss the limitations of our study and suggest several future directions for the field. Problem and hint content used in the experiment is provided for replicability

    Ensembling predictions of student post-test scores for an intelligent tutoring system.

    Get PDF
    ________________________________________________________________________ Over the last few decades, there have been a rich variety of approaches towards modeling student knowledge and skill within interactive learning environments. There have recently been several empirical comparisons as to which types of student models are better at predicting future performance, both within and outside of the interactive learning environment. A recent paper (Baker et al., in press) considers whether ensembling can produce better prediction than individual models, when ensembling is performed at the level of predictions of performance within the tutor. However, better performance was not achieved for predicting the post-test. In this paper, we investigate ensembling at the post-test level, to see if this approach can produce better prediction of post-test scores within the context of a Cognitive Tutor for Genetics. We find no improvement for ensembling over the best individual models and we consider possible explanations for this finding, including the limited size of the data set

    Survey of Computerized Adaptive Testing: A Machine Learning Perspective

    Full text link
    Computerized Adaptive Testing (CAT) provides an efficient and tailored method for assessing the proficiency of examinees, by dynamically adjusting test questions based on their performance. Widely adopted across diverse fields like education, healthcare, sports, and sociology, CAT has revolutionized testing practices. While traditional methods rely on psychometrics and statistics, the increasing complexity of large-scale testing has spurred the integration of machine learning techniques. This paper aims to provide a machine learning-focused survey on CAT, presenting a fresh perspective on this adaptive testing method. By examining the test question selection algorithm at the heart of CAT's adaptivity, we shed light on its functionality. Furthermore, we delve into cognitive diagnosis models, question bank construction, and test control within CAT, exploring how machine learning can optimize these components. Through an analysis of current methods, strengths, limitations, and challenges, we strive to develop robust, fair, and efficient CAT systems. By bridging psychometric-driven CAT research with machine learning, this survey advocates for a more inclusive and interdisciplinary approach to the future of adaptive testing
    • …
    corecore