74 research outputs found

    Cytotoxic, cytostatic and HIV-1 PR inhibitory activities of the soft coral litophyton arboreum

    Get PDF
    Bioassay-guided fractionation using different chromatographic and spectroscopic techniques in the analysis of the Red Sea soft coral Litophyton arboreum led to the isolation of nine compounds; sarcophytol M (1), alismol (2), 24-methylcholesta-5,24(28)-diene-3β-ol (3), 10-O-methyl alismoxide (4), alismoxide (5), (S)-chimyl alcohol (6), 7β-acetoxy-24-methylcholesta-5-24(28)-diene-3,19-diol (7), erythro-N-dodecanoyl-docosasphinga-(4E,8E)-dienine (8), and 24-methylcholesta-5,24 (28)-diene-3β,7β,19-triol (9). Some of the isolated compounds demonstrated potent cytotoxic- and/or cytostatic activity against HeLa and U937 cancer cell lines and inhibitory activity against HIV-1 protease (PR). Compound 7 was strongly cytotoxic against HeLa cells (CC50 4.3 ± 0.75 μM), with selectivity index of SI 8.1, which was confirmed by real time cell electronic sensing (RT-CES). Compounds 2, 7, and 8 showed strong inhibitory activity against HIV-1 PR at IC50s of 7.20 ± 0.7, 4.85 ± 0.18, and 4.80 ± 0.92 μM respectively. In silico docking of most compounds presented comparable scores to that of acetyl pepstatin, a known HIV-1 PR inhibitor. Interestingly, compound 8 showed potent HIV-1 PR inhibitory activity in the absence of cytotoxicity against the cell lines used. In addition, compounds 2 and 5 demonstrated cytostatic action in HeLa cells, revealing potential use in virostatic cocktails. Taken together, data presented here suggest Litophyton arboreum to contain promising compounds for further investigation against the diseases mentioned.IS

    Acetyl-11-keto-β-boswellic acid (AKBA); targeting oral cavity pathogens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Boswellic acids mixture of triterpenic acids obtained from the oleo gum resin of <it>Boswellia serrata </it>and known for its effectiveness in the treatment of chronic inflammatory disease including peritumor edema. Boswellic acids have been extensively studied for a number of activities including anti inflammatory, antitumor, immunomodulatory, and inflammatory bowel diseases. The present study describes the antimicrobial activities of boswellic acid molecules against oral cavity pathogens. Acetyl-11-keto-β-boswellic acid (AKBA), which exhibited the most potent antibacterial activity, was further evaluated in time kill studies, mutation prevention frequency, postantibiotic effect (PAE) and biofilm susceptibility assay against oral cavity pathogens.</p> <p>Findings</p> <p>AKBA exhibited an inhibitory effect on all the oral cavity pathogens tested (MIC of 2-4 μg/ml). It exhibited concentration dependent killing of S<it>treptococcus mutans </it>ATCC 25175 up to 8 × MIC and also prevented the emergence of mutants of <it>S.mutans </it>ATCC 25175 at 8× MIC. AKBA demonstrated postantibiotic effect (PAE) of 5.7 ± 0.1 h at 2 × MIC. Furthermore, AKBA inhibited the formation of biofilms generated by <it>S.mutans </it>and <it>Actinomyces viscosus </it>and also reduced the preformed biofilms by these bacteria.</p> <p>Conclusions</p> <p>AKBA can be useful compound for the development of antibacterial agent against oral pathogens and it has great potential for use in mouthwash for preventing and treating oral infections.</p

    STRUCTURE OF SERRATOL, A NEW DITERPENE CEMBRANOID ALCOHOL FROM BOSWELLIA-SERRATA ROXB

    No full text

    Chelated Titanium(IV) & Organotin(IV) Derivatives of Mixed Azines

    Get PDF
    73-7
    corecore