3,406 research outputs found
On Throughput and Decoding Delay Performance of Instantly Decodable Network Coding
In this paper, a comprehensive study of packet-based instantly decodable
network coding (IDNC) for single-hop wireless broadcast is presented. The
optimal IDNC solution in terms of throughput is proposed and its packet
decoding delay performance is investigated. Lower and upper bounds on the
achievable throughput and decoding delay performance of IDNC are derived and
assessed through extensive simulations. Furthermore, the impact of receivers'
feedback frequency on the performance of IDNC is studied and optimal IDNC
solutions are proposed for scenarios where receivers' feedback is only
available after and IDNC round, composed of several coded transmissions.
However, since finding these IDNC optimal solutions is computational complex,
we further propose simple yet efficient heuristic IDNC algorithms. The impact
of system settings and parameters such as channel erasure probability, feedback
frequency, and the number of receivers is also investigated and simple
guidelines for practical implementations of IDNC are proposed.Comment: This is a 14-page paper submitted to IEEE/ACM Transaction on
Networking. arXiv admin note: text overlap with arXiv:1208.238
On Coding for Cooperative Data Exchange
We consider the problem of data exchange by a group of closely-located
wireless nodes. In this problem each node holds a set of packets and needs to
obtain all the packets held by other nodes. Each of the nodes can broadcast the
packets in its possession (or a combination thereof) via a noiseless broadcast
channel of capacity one packet per channel use. The goal is to minimize the
total number of transmissions needed to satisfy the demands of all the nodes,
assuming that they can cooperate with each other and are fully aware of the
packet sets available to other nodes. This problem arises in several practical
settings, such as peer-to-peer systems and wireless data broadcast. In this
paper, we establish upper and lower bounds on the optimal number of
transmissions and present an efficient algorithm with provable performance
guarantees. The effectiveness of our algorithms is established through
numerical simulations.Comment: Appeared in the proceedings of the 2010 IEEE Information Theory
Workshop (ITW 2010, Cairo
Dynamic Rate Adaptation for Improved Throughput and Delay in Wireless Network Coded Broadcast
In this paper we provide theoretical and simulation-based study of the
delivery delay performance of a number of existing throughput optimal coding
schemes and use the results to design a new dynamic rate adaptation scheme that
achieves improved overall throughput-delay performance.
Under a baseline rate control scheme, the receivers' delay performance is
examined. Based on their Markov states, the knowledge difference between the
sender and receiver, three distinct methods for packet delivery are identified:
zero state, leader state and coefficient-based delivery. We provide analyses of
each of these and show that, in many cases, zero state delivery alone presents
a tractable approximation of the expected packet delivery behaviour.
Interestingly, while coefficient-based delivery has so far been treated as a
secondary effect in the literature, we find that the choice of coefficients is
extremely important in determining the delay, and a well chosen encoding scheme
can, in fact, contribute a significant improvement to the delivery delay.
Based on our delivery delay model, we develop a dynamic rate adaptation
scheme which uses performance prediction models to determine the sender
transmission rate. Surprisingly, taking this approach leads us to the simple
conclusion that the sender should regulate its addition rate based on the total
number of undelivered packets stored at the receivers. We show that despite its
simplicity, our proposed dynamic rate adaptation scheme results in noticeably
improved throughput-delay performance over existing schemes in the literature.Comment: 14 pages, 15 figure
- …
