24 research outputs found

    A new ductile moment-resisting connection for precast concrete frames in seismic regions: An experimental investigation

    Get PDF
    A new ductile moment-resisting beam–column connection is developed for precast reinforced concrete (RC) frames in high seismic zones. The proposed connection provides good structural integrity in the connections and can reduce construction time by eliminating the need for formworks and welding, and minimizing cast-in-place concrete volume. A series of cyclic loading tests were carried out on six full-scale interior and exterior precast connections and two monolithic connections, all designed for use in high seismic zones. Test variables included the type of stirrups (open and closed) and the stirrup spacing in the beam connection zone. Test specimens were subjected to a constant axial load and a reverse cyclic loading based on a given displacement history. Flexural strength, ductility, strength degradation and energy dissipation capacity of the precast and monolithic connections are compared. The proposed interior and exterior moment-resisting connections proved to be efficient at improving the seismic performance of precast concrete frames in high seismic zones. While the precast connections provided adequate flexural strength, strength degradation and drift capacity, they exhibited considerably higher ductility and energy dissipation compared to similar monolithic specimens

    Shape optimization of cold-formed steel beam-columns with practical and manufacturing constraints

    Get PDF
    This study aims to present a practical method for optimization of symmetric cold-formed steel (CFS) beam-column members using Genetic Algorithm (GA). To eliminate impractical cross-section shapes from the optimization results, a range of manufacturing and construction constraints are incorporated into the optimization process. Axial forces are applied with different eccentricities (0 to 30 mm) to cover the full spectrum of beam-column actions from pure axial compression to pure bending. The effect of element length on the optimization results is investigated by using short, intermediate and long beam-column members. A total of 132 beam-columns with different cross section shape complexity (4 to 12 rollers/nodes and 1 to 3 lips) are optimized. The compression and bending moment strengths are obtained based on direct strength method (DSM) using CUFSM software by accounting for local, distortional and global buckling modes. The results show that using more complex shapes does not necessarily lead to better design solutions. Increasing the eccentricity generally leads to more spread optimum sections particularly when distortional buckling is the predominant mode in short and intermediate-length beam-columns. In cases where local and global buckling modes govern the design, however, less spread sections with higher turn angles generally provide higher strength capacities. With the variation of eccentricity, the ultimate strength of optimum beam-column sections normalized by the strength of a reference lipped-channel are in the range of 110–163%, 128–194% and 160–222% for short, medium and long members, respectively. The results of this study, should prove useful in more efficient design of CFS beam-column elements in practice
    corecore