5 research outputs found

    Role of Mycobacterium tuberculosis Ser/Thr Kinase PknF: Implications in Glucose Transport and Cell Division

    No full text
    Protein kinases have a diverse array of functions in bacterial physiology, with a distinct role in the regulation of development, stress responses, and pathogenicity. pknF, one of the 11 kinases of Mycobacterium tuberculosis, encodes an autophosphorylating, transmembrane serine/threonine protein kinase, which is absent in the fast-growing, nonpathogenic Mycobacterium smegmatis. Herein, we investigate the physiological role of PknF using an antisense strategy with M. tuberculosis and expressing PknF and its kinase mutant (K41M) in M. smegmatis. Expression of PknF in M. smegmatis led to reduction in the growth rate and shortening and swelling of cells with constrictions. Interestingly, an antisense strain of M. tuberculosis expressing a low level of PknF displayed fast growth and a deformed cell morphology compared to the wild-type strain. Electron microscopy showed that most of the cells of the antisense strain were of a smaller size with an aberrant septum. Furthermore, nutrient transport analysis of these strains was conducted using (3)H-labeled and (14)C-labeled substrates. A significant increase in the uptake of d-glucose but not of glycerol, leucine, or oleic acid was observed in the antisense strain compared to the wild-type strain. The results suggest that PknF plays a direct/indirect role in the regulation of glucose transport, cell growth, and septum formation in M. tuberculosis

    Phosphoprotein phosphatase of Mycobacterium tuberculosis dephosphorylates serine-threonine kinases PknA and PknB

    No full text
    The regulation of cellular processes by the modulation of protein phosphorylation/dephosphorylation is fundamental to a large number of processes in living organisms. These processes are carried out by specific protein kinases and phosphatases. In this study, a previously uncharacterized gene (Rv0018c) of Mycobacterium tuberculosis, designated as mycobacterial Ser/Thr phosphatase (mstp), was cloned, expressed in Escherichia coli, and purified as a histidine-tagged protein. Purified protein (Mstp) dephosphorylated the phosphorylated Ser/Thr residues of myelin basic protein (MBP), histone, and casein but failed to dephosphorylate phospho-tyrosine residue of these substrates, suggesting that this phosphatase is specific for Ser/Thr residues. It has been suggested that mstp is a part of a gene cluster that also includes two Ser/Thr kinases pknA and pknB. We show that Mstp is a trans-membrane protein that dephosphorylates phosphorylated PknA and PknB. Southern blot analysis revealed that mstp is absent in the fast growing saprophytes Mycobacterium smegmatis and Mycobacterium fortuitum. PknA has been shown, whereas PknB has been proposed to play a role in cell division. The presence of mstp in slow growing mycobacterial species, its trans-membrane localization, and ability to dephosphorylate phosphorylated PknA and PknB implicates that Mstp may play a role in regulating cell division in M. tuberculosis

    A MALDI-TOF MS database with broad genus coverage for species-level identification of Brucella.

    No full text
    Brucella are highly infectious bacterial pathogens responsible for a severely debilitating zoonosis called brucellosis. Half of the human population worldwide is considered to live at risk of exposure, mostly in the poorest rural areas of the world. Prompt diagnosis of brucellosis is essential to prevent complications and to control epidemiology outbreaks, but identification of Brucella isolates may be hampered by the lack of rapid and cost-effective methods. Nowadays, many clinical microbiology laboratories use Matrix-Assisted Laser Desorption Ionization-Time Of Flight mass spectrometry (MALDI-TOF MS) for routine identification. However, lack of reference spectra in the currently commercialized databases does not allow the identification of Brucella isolates. In this work, we constructed a Brucella MALDI-TOF MS reference database using VITEK MS. We generated 590 spectra from 84 different strains (including rare or atypical isolates) to cover this bacterial genus. We then applied a novel biomathematical approach to discriminate different species. This allowed accurate identification of Brucella isolates at the genus level with no misidentifications, in particular as the closely related and less pathogenic Ochrobactrum genus. The main zoonotic species (B. melitensis, B. abortus and B. suis) could also be identified at the species level with an accuracy of 100%, 92.9% and 100%, respectively. This MALDI-TOF reference database will be the first Brucella database validated for diagnostic and accessible to all VITEK MS users in routine. This will improve the diagnosis and control of brucellosis by allowing a rapid identification of these pathogens
    corecore