12 research outputs found

    Influence of tin doped TiO2 nanorods on dye sensitized solar cells

    Get PDF
    The one-step hydrothermal method was used to synthesize Sn-doped TiO2 (Sn-TiO2) thin films, in which the variation in Sn content ranged from 0 to 7-wt % and, further, its influence on the performance of a dye-sensitized solar cell (DSSC) photoanode was studied. The deposited samples were analyzed by X-ray diffraction (XRD) and Raman spectroscopy, which confirmed the existence of the rutile phase of the synthesized samples with crystallite size ranges in between 20.1 to 22.3 nm. In addition, the bare and Sn-TiO2 thin films showed nanorod morphology. A reduction in the optical band gap from 2.78 to 2.62 eV was observed with increasing Sn content. The X-ray photoelectron spectroscopy (XPS) analysis confirmed Sn4+ was successfully replaced at the Ti4+ site. The 3-wt % Sn-TiO2 based DSSC showed the optimum efficiency of 4.01%, which was superior to 0.87% of bare and other doping concentrations of Sn-TiO2 based DSSCs. The present work reflects Sn-TiO2 as an advancing material with excellent capabilities, which can be used in photovoltaic energy conversion devices

    Relation of anthropometric variables to coronary artery disease risk factors

    No full text
    Background and Objectives: Anthropometric variables and their relation to conventional coronary artery disease (CAD) risk factors in railway employees have been inadequately studied in India. This cross-sectional survey was carried out in the Solapur division of the Central railway in the year 2004, to assess the anthropometric variables in railway employees and their relation to conventional CAD risk factors. Materials and Methods: A total of 995 railway employees, with 872 males and 123 females participated in this cross-sectional study. All subjects underwent anthropometric measurements, fasting lipid profile, and blood sugar level. Various anthropometric indices were calculated for body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), and abdominal volume index (AVI). Statistical analysis was done by EPI Info 6 statistical software. Results: Compared to all other obesity indices, WHtR was most prevalent in both genders. High WHtR was present in 699 (80.16%) males and 103 (83.73%) females. Age ≥45 years, high systolic BP, high diastolic BP, low HDL, high triglyceride, and diabetes mellitus were positively correlated with high BMI, high WC, high WHR, high WHtR, and high AVI. High BMI, high WC, high WHR, high WHtR, and high AVI were negatively associated with physical inactivity. Conclusions: Over all, anthropometric variables in both genders were significantly deranged in subjects with coronary risk factors. Compared to all other anthropometric variables, WHtR was statistically significantly associated with a majority of coronary artery risk factors. Hence we recommend inclusion of WHtR as a parameter of obesity to predict coronary artery disease risk factor along with WC, WHR, and BMI in epidemiologic studies

    Square-Facet Nanobar MOF-Derived Co<sub>3</sub>O<sub>4</sub>@Co/N-doped CNT Core–Shell-based Nanocomposites as Cathode Materials for High-Performance Supercapacitor Studies

    No full text
    The binary as well as ternary nanocomposites of the square-facet nanobar Co-MOF-derived Co3O4@Co/N-CNTs (N-CNTs: nitrogen-doped carbon nanotubes) with Ag NPs and rGO have been synthesized via an easy wet chemical route, and their supercapacitor behavior was then studied. At a controlled pH of the precursor solution, square-facet nanobars of Co-MOF were first synthesized by the solvothermal method and then pyrolyzed under a controlled nitrogen atmosphere to get a core–shell system of Co3O4@Co/N-CNTs. In the second step, different compositions of Co3O4@Co/N-CNT core–shell structures were formed by an ex-situ method with Ag NPs and rGO moieties. Among several bare, binary, and ternary compositions tested in 6 M aqueous KOH electrolyte, a ternary nanocomposite having a 7.0:1.5:1.5 stoichiometric ratio of Co3O4@Co/N-CNT, Ag NPs, and rGO, respectively, reported the highest specific capacitance (3393.8 F g–1 at 5 mV s–1). The optimized nanocomposite showed the energy density, power density, and Coulombic efficiency of 74.1 W h.kg–1, 443.7 W.kg–1, and 101.3%, respectively, with excellent electrochemical stability. After testing an asymmetrical supercapacitor with a Co3O4@Co/N-CNT/Ag NPs/rGO/nickel foam cathode and an activated carbon/nickel foam anode, it showed 4.9 W h.kg–1 of energy density and 5000.0 W.kg–1 of power density

    Influence of Tin Doped TiO2 Nanorods on Dye Sensitized Solar Cells

    Get PDF
    The one-step hydrothermal method was used to synthesize Sn-doped TiO2 (Sn-TiO2) thin films, in which the variation in Sn content ranged from 0 to 7-wt % and, further, its influence on the performance of a dye-sensitized solar cell (DSSC) photoanode was studied. The deposited samples were analyzed by X-ray diffraction (XRD) and Raman spectroscopy, which confirmed the existence of the rutile phase of the synthesized samples with crystallite size ranges in between 20.1 to 22.3 nm. In addition, the bare and Sn-TiO2 thin films showed nanorod morphology. A reduction in the optical band gap from 2.78 to 2.62 eV was observed with increasing Sn content. The X-ray photoelectron spectroscopy (XPS) analysis confirmed Sn4+ was successfully replaced at the Ti4+ site. The 3-wt % Sn-TiO2 based DSSC showed the optimum efficiency of 4.01%, which was superior to 0.87% of bare and other doping concentrations of Sn-TiO2 based DSSCs. The present work reflects Sn-TiO2 as an advancing material with excellent capabilities, which can be used in photovoltaic energy conversion devices

    Thermally stable and transparent superhydrophobic sol-gel coatings by spray method

    No full text
    A facile method was developed for the fabrication of the methyltriethoxysilane based transparent and superhydrophobic coating on glass substrates. The transparent and hydrophobic coatings were deposited on the glass substrates, using spray deposition method followed by surface modification process. A spray deposition method generates hierarchical morphology and post surface modification with monofunctional trimethylchlorosilane decreases the surface free energy of coating. These combined effects of synthesis produces bio-inspired superhydrophobic surface. The deposited coating surface shows high optical transparency, micro-nano scale hierarchical structures, improved hydrophobic thermal stability, static water contact angle of about 167� ± 1�, low sliding angle about 2� ± 1� and stable superhydrophobic nature. This paper provides the very simple sol–gel approach to the fabrication of optically transparent, thermally stable superhydrophobic coating on glass substrates. This fabrication strategy may easily extend to the industrial scale up and high-technology fields
    corecore