14 research outputs found

    Dexamethasone inhibits the Nox-dependent ROS production via suppression of MKP-1-dependent MAPK pathways in activated microglia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nox-2 (also known as gp91<it>phox</it>), a subunit component of NADPH oxidases, generates reactive oxygen species (ROS). Nox-dependent ROS generation and nitric oxide (NO) release by microglia have been implicated in a variety of diseases in the central nervous system. Dexamethasone (Dex) has been shown to suppress the ROS production, NO release and inflammatory reaction of activated microglial cells. However, the underlying mechanisms remain unclear.</p> <p>Results</p> <p>The present study showed that the increased ROS production and NO release in activated BV-2 microglial cells by LPS were associated with increased expression of Nox-2 and iNOS. Dex suppressed the upregulation of Nox-2 and iNOS, as well as the subsequent ROS production and NO synthesis in activated BV-2 cells. This inhibition caused by Dex appeared to be mediated by upregulation of MAPK phosphatase-1 (MKP-1), which antagonizes the activity of mitogen-activated protein kinases (MAPKs). Dex induced-suppression of Nox-2 and -upregulation of MKP-1 was also evident in the activated microglia from corpus callosum of postnatal rat brains. The overexpression of MKP-1 or inhibition of MAPKs (by specific inhibitors of JNK and p38 MAPKs), were found to downregulate the expression of Nox-2 and iNOS and thereby inhibit the synthesis of ROS and NO in activated BV-2 cells. Moreover, Dex was unable to suppress the LPS-induced synthesis of ROS and NO in BV-2 cells transfected with MKP-1 siRNA. On the other hand, knockdown of Nox-2 in BV-2 cells suppressed the LPS-induced ROS production and NO release.</p> <p>Conclusion</p> <p>In conclusion, it is suggested that downregulation of Nox-2 and overexpression of MKP-1 that regulate ROS and NO may form the potential therapeutic strategy for the treatment of neuroinflammation in neurodegenerative diseases.</p

    Scutellarin regulates microglia-mediated TNC1 astrocytic reaction and astrogliosis in cerebral ischemia in the adult rats

    Get PDF
    Additional file 1: (A). Scutellarin at 0.54 mM did not elicit a noticeable reaction of GFAP/iNOS in TNC1. (B). iNOS mRNA expression in TNC1 astrocytes remained relatively unchanged at all time-points following treatment with BM, BM + L and CM; however, when incubated with CM + L for various time points, TNC1 showed a remarkable increase in iNOS peaking at 24 h. (C). Confocal images showing iNOS (C1-3) expression in TNC1 astrocytes incubated with different medium for 24 h. Compared with cells incubated in BM (C1) and BM + L (C2), TNC1 astrocytes incubated with CM + L (C3) were hypertrophic and showed a marked increase in iNOS immunofluorescence. Scale bars: 20 μm. DAPI—blue

    Transcriptome analysis of amoeboid and ramified microglia isolated from the corpus callosum of rat brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microglia, the resident immune cells of the central nervous system (CNS), have two distinct phenotypes in the developing brain: amoeboid form, known to be amoeboid microglial cells (AMC) and ramified form, known to be ramified microglial cells (RMC). The AMC are characterized by being proliferative, phagocytic and migratory whereas the RMC are quiescent and exhibit a slow turnover rate. The AMC transform into RMC with advancing age, and this transformation is indicative of the gradual shift in the microglial functions. Both AMC and RMC respond to CNS inflammation, and they become hypertrophic when activated by trauma, infection or neurodegenerative stimuli. The molecular mechanisms and functional significance of morphological transformation of microglia during normal development and in disease conditions is not clear. It is hypothesized that AMC and RMC are functionally regulated by a specific set of genes encoding various signaling molecules and transcription factors.</p> <p>Results</p> <p>To address this, we carried out cDNA microarray analysis using lectin-labeled AMC and RMC isolated from frozen tissue sections of the corpus callosum of 5-day and 4-week old rat brain respectively, by laser capture microdissection. The global gene expression profiles of both microglial phenotypes were compared and the differentially expressed genes in AMC and RMC were clustered based on their functional annotations. This genome wide comparative analysis identified genes that are specific to AMC and RMC.</p> <p>Conclusions</p> <p>The novel and specific molecules identified from the trancriptome explains the quiescent state functioning of microglia in its two distinct morphological states.</p
    corecore