112 research outputs found

    A fluctuating environment as a source of periodic modulation

    Full text link
    We study the intermittent fluorescence of a single molecule, jumping from the "light on" to the "light off" state, as a Poisson process modulated by a fluctuating environment. We show that the quasi-periodic and quasi-deterministic environmental fluctuations make the distribution of the times of sojourn in the "light off" state depart from the exponential form, and that their succession in time mirrors environmental dynamics. As an illustration, we discuss some recent experimental results, where the environmental fluctuations depend on enzymatic activity.Comment: 13 pages, 4 figures. Accepted for publication on Chem. Phys. Let

    Renewal, Modulation and Superstatistics

    Full text link
    We consider two different proposals to generate a time series with the same non-Poisson distribution of waiting times, to which we refer to as renewal and modulation. We show that, in spite of the apparent statistical equivalence, the two time series generate different physical effects. Renewal generates aging and anomalous scaling, while modulation yields no aging and either ordinary or anomalous diffusion, according to the prescription used for its generation. We argue, in fact, that the physical realization of modulation involves critical events, responsible for scaling. In conclusion, modulation rather than ruling out the action of critical events, sets the challenge for their identification

    Fluorescence intermittency in blinking quantum dots: renewal or slow modulation?

    Full text link
    We study time series produced by the blinking quantum dots, by means of an aging experiment, and we examine the results of this experiment in the light of two distinct approaches to complexity, renewal and slow modulation. We find that the renewal approach fits the result of the aging experiment, while the slow modulation perspective does not. We make also an attempt at establishing the existence of an intermediate condition.Comment: 27 pages, 8 figures. Accepted for pubblication on Journal of Chemical Physic

    Fractal Complexity in Spontaneous EEG Metastable-State Transitions: New Vistas on Integrated Neural Dynamics

    Get PDF
    Resting-state EEG signals undergo rapid transition processes (RTPs) that glue otherwise stationary epochs. We study the fractal properties of RTPs in space and time, supporting the hypothesis that the brain works at a critical state. We discuss how the global intermittent dynamics of collective excitations is linked to mentation, namely non-constrained non-task-oriented mental activity
    • …
    corecore