4,587 research outputs found

    Geodesic properties in terms of multipole moments in scalar-tensor theories of gravity

    Full text link
    The formalism for describing a metric and the corresponding scalar in terms of multipole moments has recently been developed for scalar-tensor theories. We take advantage of this formalism in order to obtain expressions for the observables that characterise geodesics in terms of the moments. These expressions provide some insight into how the structure of a scalarized compact object affects observables. They can also be used to understand how deviations from general relativity are imprinted on the observables.Comment: 16 page

    Dynamic load management and optimum sizing of stand-alone hybrid PV/Wind system.

    Get PDF
    Simulation algorithms for the sizing of stand-alone hybrid PV/Wind systems are a powerful tool in evaluating the optimum configuration that would cover the energy demand with a predefined reliability level at the lowest cost. Several parameters such as the interval of the simulation (day, day-night, hourly) and the consumption profile may significantly affect the optimum configuration. This paper examines the effect of these parameters within an optimum sizing simulation algorithm developed. The effect of these parameters was particularly evident at low battery capacities, which involve optimum configurations resulting in minimum cost. Furthermore, shift-able loads in the hourly-based weekly profile assumed in this study were identified, and a dynamic load management functionality was developed. In this approach, loads that could be shifted through time were dynamically allocated during periods of excess energy production by the hybrid PV/Wind system. The results showed an increase in system reliability from 95% to 97% when load shifting was introduced. Finally, sizing the system for only the static (non-shift-able loads) proved to withstand the addition of the extra shift-able loads while retaining the 95% reliability level when the load management functionality was introduced. Thus, a smaller installation with lower cost is achieved

    Matching of analytical and numerical solutions for neutron stars of arbitrary rotation

    Full text link
    We demonstrate the results of an attempt to match the two-soliton analytical solution with the numerically produced solutions of the Einstein field equations, that describe the spacetime exterior of rotating neutron stars, for arbitrary rotation. The matching procedure is performed by equating the first four multipole moments of the analytical solution to the multipole moments of the numerical one. We then argue that in order to check the effectiveness of the matching of the analytical with the numerical solution we should compare the metric components, the radius of the innermost stable circular orbit (RISCOR_{ISCO}), the rotation frequency Ωdϕdt\Omega\equiv\frac{d\phi}{dt} and the epicyclic frequencies Ωρ,  Ωz\Omega_{\rho},\;\Omega_z. Finally we present some results of the comparison.Comment: Contribution at the 13th Conference on Recent Developments in Gravity (NEB XIII), corrected typo in M4M_4 of eq. 5 of the published versio

    Observation of B_s Production at the Y(5S) Resonance

    Get PDF
    Using the CLEO detector at the Cornell Electron Storage Ring, we have observed the B_s meson in e^+e^- annihilation at the Υ(5S) resonance. We find 14 candidates consistent with B_s decays into final states with a J/ψ or a D_s^((*)-). The probability that we have observed a background fluctuation is less than 8×10^(-10). We have established that at the energy of the Υ(5S) resonance B_s production proceeds predominantly through the creation of B_s^*B̅ _s^* pairs. We find σ(e^+e^-→B^s^*B̅ ^*)=[0.11_(-0.03)^(+0.04)(stat)±0.02(syst)]  nb, and set the following limits: σ(e^+e^-→B_sB̅ _s)/σ(e^+e^-→B_s^*B̅ _s^*)<0.16 and [σ(e^+e^-→B_sB̅ _s^*)+σ(e^+e^-→B_s*B̅ _s)]/σ(e^+e^-→B_s*B̅ _s^*)<0.16 (90% C.L.). The mass of the B_s^* meson is measured to be M_(B_s^*=[5.414±0.001(stat)±0.003(syst)]  GeV/c^2

    Evaluating Antecedents to Treatment Success in Juveniles with Sexually Problematic Behavior

    Get PDF
    The impact of rape and other sexual offenses represents a major problem in society and can lead to chronic and harmful physical, psychological, and social consequences. Juveniles (younger than 18 years old) account for 20% of sexual offense arrests in the United States, with 96% of reported cases committed by male perpetrators. Risk indicators and characteristics of juveniles who sexually offend include demographic factors (e.g., history of sexual abuse), personality factors (e.g., antisocial behavior), and below average intelligence and cognitive functioning. Treatment of problematic sexual behavior in juveniles varies in intensity, structure, and level of supervision, though research investigating unsuccessful treatment completion in juveniles is sparse and dated. The main goals of the current study were to identify factors that predict treatment success in residential treatment in this population. Overall, juveniles with higher general and verbal intelligence were more likely to complete residential treatment. Additionally, juveniles who were not reported victims of sexual abuse were more likely to complete residential treatment. Lastly, various demographic and historical variables predicted length of stay in treatment. Findings supported intelligence as a predictor of treatment completion in the current population, extending previous findings for the potential benefit of identifying and screening juveniles, as well as using adaptive approaches for treatment in the current population
    corecore