2,823 research outputs found

    Electric-field noise from carbon-adatom diffusion on a Au(110) surface: first-principles calculations and experiments

    Full text link
    The decoherence of trapped-ion quantum gates due to heating of their motional modes is a fundamental science and engineering problem. This heating is attributed to electric-field noise arising from the trap-electrode surfaces. In this work, we investigate the source of this noise by focusing on the diffusion of carbon-containing adsorbates on the surface of Au(110). We show by density functional theory, based on detailed scanning probe microscopy, how the carbon adatom diffusion on the gold surface changes the energy landscape, and how the adatom dipole moment varies with the diffusive motion. A simple model for the diffusion noise, which varies quadratically with the variation of the dipole moment, qualitatively reproduces the measured noise spectrum, and the estimate of the noise spectral density is in accord with measured values.Comment: 8 pages, 6 figure

    Optimal Excitation Controller Design for Wind Turbine Generator

    Get PDF
    An optimal excitation controller design based on multirate-output controllers (MROCs) having a multirate sampling mechanismwith different sampling period in each measured output of the system is presented. The proposed H∞ -control techniqueis applied to the discrete linear open-loop system model which represents a wind turbine generator supplying an infinite busthrough a transmission line

    Observation of quantum oscillations between a Josephson phase qubit and a microscopic resonator using fast readout

    Full text link
    We have detected coherent quantum oscillations between Josephson phase qubits and microscopic critical-current fluctuators by implementing a new state readout technique that is an order of magnitude faster than previous methods. The period of the oscillations is consistent with the spectroscopic splittings observed in the qubit's resonant frequency. The results point to a possible mechanism for decoherence and reduced measurement fidelity in superconducting qubits and demonstrate the means to measure two-qubit interactions in the time domain

    Extended skyrmion lattice scattering and long-time memory in the chiral magnet Fe1−x_{1-x}Cox_xSi

    Full text link
    Small angle neutron scattering measurements on a bulk single crystal of the doped chiral magnet Fe1−x_{1-x}Cox_xSi with xx=0.3 reveal a pronounced effect of the magnetic history and cooling rates on the magnetic phase diagram. The extracted phase diagrams are qualitatively different for zero and field cooling and reveal a metastable skyrmion lattice phase outside the A-phase for the latter case. These thermodynamically metastable skyrmion lattice correlations coexist with the conical phase and can be enhanced by increasing the cooling rate. They appear in a wide region of the phase diagram at temperatures below the AA-phase but also at fields considerably smaller or higher than the fields required to stabilize the A-phase

    Decoherence in Josephson Qubits from Dielectric Loss

    Full text link
    Dielectric loss from two-level states is shown to be a dominant decoherence source in superconducting quantum bits. Depending on the qubit design, dielectric loss from insulating materials or the tunnel junction can lead to short coherence times. We show that a variety of microwave and qubit measurements are well modeled by loss from resonant absorption of two-level defects. Our results demonstrate that this loss can be significantly reduced by using better dielectrics and fabricating junctions of small area ≲10μm2\lesssim 10 \mu \textrm{m}^2. With a redesigned phase qubit employing low-loss dielectrics, the energy relaxation rate has been improved by a factor of 20, opening up the possibility of multi-qubit gates and algorithms.Comment: shortened version submitted to PR
    • …
    corecore