97 research outputs found

    Nanoscale Confinement and Fluorescence Effects of Bacterial Light Harvesting Complex LH2 in Mesoporous Silicas

    Get PDF
    Many key chemical and biochemical reactions, particularly in living cells, take place in confined space at the mesoscopic scale. Toward understanding of physicochemical nature of biomacromolecules confined in nanoscale space, in this work we have elucidated fluorescence effects of a light harvesting complex LH2 in nanoscale chemical environments. Mesoporous silicas (SBA-15 family) with different shapes and pore sizes were synthesized and used to create nanoscale biomimetic environments for molecular confinement of LH2. A combination of UV-vis absorption, wide-field fluorescence microscopy, and in situ ellipsometry supports that the LH2 complexes are located inside the silica nanopores. Systematic fluorescence effects were observed and depend on degree of space confinement. In particular, the temperature dependence of the steady-state fluorescence spectra was analyzed in detail using condensed matter band shape theories. Systematic electronic-vibrational coupling differences in the LH2 transitions between the free and confined states are found, most likely responsible for the fluorescence effects experimentally observed

    Derivative manipulation in the structure solution of the integral membrane LH2 complex

    No full text
    The structure of the peripheral light-harvesting complex from Rhodopseudomonas acidophila strain 10050 was determined by multiple isomorphous replacement methods. The derivatization of the crystals was augmented by the addition of a backsoaking stage. The soak/backsoaked data comparison had greater isomorphism and showed simpler Patterson maps than the standard native/soak comparison. Amplitudes from the derivatized then backsoaked crystals and from the derivatized crystals were compared in order to extract a subset of heavy-atom sites. Using this information, the full array of sites were found from a derivative/native comparison, eventually leading to excellent electron-density maps.</jats:p
    • …
    corecore