18 research outputs found

    Structural and functional analysis of the flexible regions of the catalytic \u3b1-subunit of protein kinase CK2.

    No full text
    CK2 is a Ser/Thr protein kinase essential for cell viability. Its activity is anomalously high in several solid (prostate, mammary gland, lung, kidney and head and neck) and haematological tumours (AML, CML and PML), creating conditions favouring the onset of cancer. Cancer cells become addicted to high levels of CK2 activity and therefore this kinase is a remarkable example of "non-oncogene addiction". CK2 is a validated target for cancer therapy with one inhibitor in phase I clinical trials. Several crystal structures of CK2 are available, many in complex with ATP-competitive inhibitors, showing the presence of regions with remarkable flexibility. We present the structural characterisation of these regions by means of seven new crystal structures, in the apo form and in complex with inhibitors. We confirm previous findings about the unique flexibility of the CK2alpha catalytic subunit in the hinge/alphaD region, the p-loop and the beta4beta5 loop, and show here that there is no clear-cut correlation between the conformations of these flexible zones. Our findings challenge some of the current interpretations on the functional role of these regions and dispute the hypothesis that small ligands stabilize an inactive state. The mobility of the hinge/alphaD region in the human enzyme is unique among protein kinases, and this can be exploited for the development of more selective ATP-competitive inhibitors. The identification of different ligand binding modes to a secondary site can provide hints for the design of non-ATP-competitive inhibitors targeting the interaction between the alpha catalytic and the beta regulatory subunits

    Crystal structure of alkyl hydroperoxide-reductase (AhpC) from Helicobacter pylori

    No full text
    The AhpC protein from H. pylori, a thioredoxin (Trx)-dependent alkyl hydroperoxide-reductase, is a member of the ubiquitous 2-Cys peroxiredoxins family (2-Cys Prxs), a group of thiol-specific antioxidant enzymes. Prxs exert the protective antioxidant role in cells through their peroxidase activity, whereby hydrogen peroxide, peroxynitrite and a wide range of organic hydroperoxides (ROOH) are reduced and detoxified (ROOH + 2e(-)-->ROH + H2O). In this study AhpC has been cloned and overexpressed in E. coli. After purification to homogeneity, crystals of the recombinant protein were grown. They diffract to 2.95 A resolution using synchrotron radiation. The crystal structure of AhpC has been determined using the molecular replacement method (R = 23.6%, R(free) = 25.9%). The model, similar in the overall to other members of the 2-Cys Prx family crystallized as toroide-shaped complexes, consists of a pentameric arrangement of homodimers [(alpha2)5 decamer]. The model of AhpC from H. pylori presents significant differences with respect to other members of the family: apart from some loop regions, alpha5-helix and the C-terminus is shifted, preventing the C-terminal tail of the second subunit from extending toward this region of the molecule. Oligomerization properties of AhpC have been also characterized by gel filtration chromatography

    The Replacement of ATP by the Competitive Inhibitor Emodin Induces Conformational Modifications in the Catalytic Site of Protein Kinase CK2

    Get PDF
    The structure of a complex between the catalytic subunit of Zea mays CK2 and the nucleotide binding site-directed inhibitor emodin (3-methyl-1,6,8-trihydroxyanthraquinone) was solved at 2.6-A resolution. Emodin enters the nucleotide binding site of the enzyme, filling a hydrophobic pocket between the N-terminal and the C-terminal lobes, in the proximity of the site occupied by the base rings of the natural co-substrates. The interactions between the inhibitor and CK2 alpha are mainly hydrophobic. Although the C-terminal domain of the enzyme is essentially identical to the ATP-bound form, the beta-sheet in the N-terminal domain is altered by the presence of emodin. The structural data presented here highlight the flexibility of the kinase domain structure and provide information for the design of selective ATP competitive inhibitors of protein kinase CK2

    Structure of two iron-binding proteins from Bacillus anthracis

    Get PDF
    Bacillus anthracis is currently under intense investigation due to its primary importance as a human pathogen. Particularly important is the development of novel anti-anthrax vaccines, devoid of the current side effects. A novel class of immunogenic bacterial proteins consists of dodecamers homologous to the DNA-binding protein of Escherichia coli (Dps). Two Dps homologous genes are present in the B. anthracis genome. The crystal structures of these two proteins (Dlp-1 and Dlp-2) have been determined and are presented here. They are sphere-like proteins with an internal cavity. We also show that they act as ferritins and are thus involved in iron uptake and regulation, a fundamental function during bacterial growth

    Structure and immunomodulatory property relationship in NapA of Borrelia burgdorferi

    No full text
    NapA from Borrelia burgdorferi is a member of the Dps-like protein family with specific immunomodulatory properties; in particular, NapA is able to induce the expression of IL-23 in neutrophils and monocytes, as well as the expression of IL-6, IL-1\u3b2, and transforming growth factor beta (TGF-\u3b2) in monocytes, via Toll-like receptor (TLR) 2. Such an activity on innate immune cells triggers a synovial fluid Th17 response. Here we report the crystal structure of NapA, determined at 2.6\uc5 resolution, which shows that the quaternary structure of the protein is that of a dodecamer with 23 symmetry, typical of the proteins of the family. We also demonstrate that the N- and C-terminal tails, which are flexible and not visible in the crystal, are not relevant for its pro-Th17 activity. Based on the crystal structure and on the comparison with the structure of the orthologous protein from Helicobacter pylori, HP-NAP, we hypothesize that the charge distributions on the two proteins' surfaces are responsible for the interaction with TLR2 and for the different behaviors in modulating the immune response

    Structure of the neutrophil activating protein from helicobacter pylori

    No full text
    Helicobacter pylori is a major human pathogen associated with severe gastroduodenal diseases, including ulcers and cancers. An, H. pylori protein that is highly immunogenic in humans and mice has been identified recently This protein has been termed HP-NAP, due to its ability of activating neutrophils. In order to achieve a molecular understanding of its unique immunogenic and pro-inflammatory properties, we have determined its three-dimensional structure. Its quaternary structure is similar to that of the dodecameric bacterial ferritins (Dps-like family), but it has a different surface potential charge distribution. This is due to the presence of a large number of positively charged residues, which could well account for its unique ability in activating human leukocytes
    corecore