252 research outputs found
Experimental Definition and Validation of Protein Coding Transcripts in Chlamydomonas reinhardtii
Algal fuel sources promise unsurpassed yields in a carbon neutral manner that minimizes resource competition between agriculture and fuel crops. Many challenges must be addressed before algal biofuels can be accepted as a component of the fossil fuel replacement strategy. One significant challenge is that the cost of algal fuel production must become competitive with existing fuel alternatives. Algal biofuel production presents the opportunity to fine-tune microbial metabolic machinery for an optimal blend of biomass constituents and desired fuel molecules. Genome-scale model-driven algal metabolic design promises to facilitate both goals by directing the utilization of metabolites in the complex, interconnected metabolic networks to optimize production of the compounds of interest. Using Chlamydomonas reinhardtii as a model, we developed a systems-level methodology bridging metabolic network reconstruction with annotation and experimental verification of enzyme encoding open reading frames. We reconstructed a genome-scale metabolic network for this alga and devised a novel light-modeling approach that enables quantitative growth prediction for a given light source, resolving wavelength and photon flux. We experimentally verified transcripts accounted for in the network and physiologically validated model function through simulation and generation of new experimental growth data, providing high confidence in network contents and predictive applications. The network offers insight into algal metabolism and potential for genetic engineering and efficient light source design, a pioneering resource for studying light-driven metabolism and quantitative systems biology. Our approach to generate a predictive metabolic model integrated with cloned open reading frames, provides a cost-effective platform to generate metabolic engineering resources. While the generated resources are specific to algal systems, the approach that we have developed is not specific to algae and can be readily expanded to other microbial systems as well as higher plants and animals
TIGER: Toolbox for integrating genome-scale metabolic models, expression data, and transcriptional regulatory networks
<p>Abstract</p> <p>Background</p> <p>Several methods have been developed for analyzing genome-scale models of metabolism and transcriptional regulation. Many of these methods, such as Flux Balance Analysis, use constrained optimization to predict relationships between metabolic flux and the genes that encode and regulate enzyme activity. Recently, mixed integer programming has been used to encode these gene-protein-reaction (GPR) relationships into a single optimization problem, but these techniques are often of limited generality and lack a tool for automating the conversion of rules to a coupled regulatory/metabolic model.</p> <p>Results</p> <p>We present TIGER, a Toolbox for Integrating Genome-scale Metabolism, Expression, and Regulation. TIGER converts a series of generalized, Boolean or multilevel rules into a set of mixed integer inequalities. The package also includes implementations of existing algorithms to integrate high-throughput expression data with genome-scale models of metabolism and transcriptional regulation. We demonstrate how TIGER automates the coupling of a genome-scale metabolic model with GPR logic and models of transcriptional regulation, thereby serving as a platform for algorithm development and large-scale metabolic analysis. Additionally, we demonstrate how TIGER's algorithms can be used to identify inconsistencies and improve existing models of transcriptional regulation with examples from the reconstructed transcriptional regulatory network of <it>Saccharomyces cerevisiae</it>.</p> <p>Conclusion</p> <p>The TIGER package provides a consistent platform for algorithm development and extending existing genome-scale metabolic models with regulatory networks and high-throughput data.</p
Reconciliation of Genome-Scale Metabolic Reconstructions for Comparative Systems Analysis
In the past decade, over 50 genome-scale metabolic reconstructions have been
built for a variety of single- and multi- cellular organisms. These
reconstructions have enabled a host of computational methods to be leveraged for
systems-analysis of metabolism, leading to greater understanding of observed
phenotypes. These methods have been sparsely applied to comparisons between
multiple organisms, however, due mainly to the existence of differences between
reconstructions that are inherited from the respective reconstruction processes
of the organisms to be compared. To circumvent this obstacle, we developed a
novel process, termed metabolic network reconciliation, whereby non-biological
differences are removed from genome-scale reconstructions while keeping the
reconstructions as true as possible to the underlying biological data on which
they are based. This process was applied to two organisms of great importance to
disease and biotechnological applications, Pseudomonas
aeruginosa and Pseudomonas putida, respectively.
The result is a pair of revised genome-scale reconstructions for these organisms
that can be analyzed at a systems level with confidence that differences are
indicative of true biological differences (to the degree that is currently
known), rather than artifacts of the reconstruction process. The reconstructions
were re-validated with various experimental data after reconciliation. With the
reconciled and validated reconstructions, we performed a genome-wide comparison
of metabolic flexibility between P. aeruginosa and P.
putida that generated significant new insight into the underlying
biology of these important organisms. Through this work, we provide a novel
methodology for reconciling models, present new genome-scale reconstructions of
P. aeruginosa and P. putida that can be
directly compared at a network level, and perform a network-wide comparison of
the two species. These reconstructions provide fresh insights into the metabolic
similarities and differences between these important
Pseudomonads, and pave the way towards full comparative
analysis of genome-scale metabolic reconstructions of multiple species
Functional States of the Genome-Scale Escherichia Coli Transcriptional Regulatory System
A transcriptional regulatory network (TRN) constitutes the collection of regulatory rules that link environmental cues to the transcription state of a cell's genome. We recently proposed a matrix formalism that quantitatively represents a system of such rules (a transcriptional regulatory system [TRS]) and allows systemic characterization of TRS properties. The matrix formalism not only allows the computation of the transcription state of the genome but also the fundamental characterization of the input-output mapping that it represents. Furthermore, a key advantage of this “pseudo-stoichiometric” matrix formalism is its ability to easily integrate with existing stoichiometric matrix representations of signaling and metabolic networks. Here we demonstrate for the first time how this matrix formalism is extendable to large-scale systems by applying it to the genome-scale Escherichia coli TRS. We analyze the fundamental subspaces of the regulatory network matrix (R) to describe intrinsic properties of the TRS. We further use Monte Carlo sampling to evaluate the E. coli transcription state across a subset of all possible environments, comparing our results to published gene expression data as validation. Finally, we present novel in silico findings for the E. coli TRS, including (1) a gene expression correlation matrix delineating functional motifs; (2) sets of gene ontologies for which regulatory rules governing gene transcription are poorly understood and which may direct further experimental characterization; and (3) the appearance of a distributed TRN structure, which is in stark contrast to the more hierarchical organization of metabolic networks
Metabolic network analysis predicts efficacy of FDA-approved drugs targeting the causative agent of a neglected tropical disease
<p>Abstract</p> <p>Background</p> <p>Systems biology holds promise as a new approach to drug target identification and drug discovery against neglected tropical diseases. Genome-scale metabolic reconstructions, assembled from annotated genomes and a vast array of bioinformatics/biochemical resources, provide a framework for the interrogation of human pathogens and serve as a platform for generation of future experimental hypotheses. In this article, with the application of selection criteria for both <it>Leishmania major </it>targets (e.g. <it>in silico </it>gene lethality) and drugs (e.g. toxicity), a method (MetDP) to rationally focus on a subset of low-toxic Food and Drug Administration (FDA)-approved drugs is introduced.</p> <p>Results</p> <p>This metabolic network-driven approach identified 15 <it>L. major </it>genes as high-priority targets, 8 high-priority synthetic lethal targets, and 254 FDA-approved drugs. Results were compared to previous literature findings and existing high-throughput screens. Halofantrine, an antimalarial agent that was prioritized using MetDP, showed noticeable antileishmanial activity when experimentally evaluated <it>in vitro </it>against <it>L. major </it>promastigotes. Furthermore, synthetic lethality predictions also aided in the prediction of superadditive drug combinations. For proof-of-concept, double-drug combinations were evaluated <it>in vitro </it>against <it>L. major </it>and four combinations involving the drug disulfiram that showed superadditivity are presented.</p> <p>Conclusions</p> <p>A direct metabolic network-driven method that incorporates single gene essentiality and synthetic lethality predictions is proposed that generates a set of high-priority <it>L. major </it>targets, which are in turn associated with a select number of FDA-approved drugs that are candidate antileishmanials. Additionally, selection of high-priority double-drug combinations might provide for an attractive and alternative avenue for drug discovery against leishmaniasis.</p
Matrix Formalism to Describe Functional States of Transcriptional Regulatory Systems
Complex regulatory networks control the transcription state of a genome. These transcriptional regulatory networks (TRNs) have been mathematically described using a Boolean formalism, in which the state of a gene is represented as either transcribed or not transcribed in response to regulatory signals. The Boolean formalism results in a series of regulatory rules for the individual genes of a TRN that in turn can be used to link environmental cues to the transcription state of a genome, thereby forming a complete transcriptional regulatory system (TRS). Herein, we develop a formalism that represents such a set of regulatory rules in a matrix form. Matrix formalism allows for the systemic characterization of the properties of a TRS and facilitates the computation of the transcriptional state of the genome under any given set of environmental conditions. Additionally, it provides a means to incorporate mechanistic detail of a TRS as it becomes available. In this study, the regulatory network matrix, R, for a prototypic TRS is characterized and the fundamental subspaces of this matrix are described. We illustrate how the matrix representation of a TRS coupled with its environment (R*) allows for a sampling of all possible expression states of a given network, and furthermore, how the fundamental subspaces of the matrix provide a way to study key TRS features and may assist in experimental design
Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor synthesis
Virulence-linked pathways in opportunistic pathogens are putative therapeutic targets that may be associated with less potential for resistance than targets in growth-essential pathways. However, efficacy of virulence-linked targets may be affected by the contribution of virulence-related genes to metabolism. We evaluate the complex interrelationships between growth and virulence-linked pathways using a genome-scale metabolic network reconstruction of Pseudomonas aeruginosa strain PA14 and an updated, expanded reconstruction of P. aeruginosa strain PAO1. The PA14 reconstruction accounts for the activity of 112 virulence-linked genes and virulence factor synthesis pathways that produce 17 unique compounds. We integrate eight published genome-scale mutant screens to validate gene essentiality predictions in rich media, contextualize intra-screen discrepancies and evaluate virulence-linked gene distribution across essentiality datasets. Computational screening further elucidates interconnectivity between inhibition of virulence factor synthesis and growth. Successful validation of selected gene perturbations using PA14 transposon mutants demonstrates the utility of model-driven screening of therapeutic targets
‘Glocal’ Robustness Analysis and Model Discrimination for Circadian Oscillators
To characterize the behavior and robustness of cellular circuits with many unknown parameters is a major challenge for systems biology. Its difficulty rises exponentially with the number of circuit components. We here propose a novel analysis method to meet this challenge. Our method identifies the region of a high-dimensional parameter space where a circuit displays an experimentally observed behavior. It does so via a Monte Carlo approach guided by principal component analysis, in order to allow efficient sampling of this space. This ‘global’ analysis is then supplemented by a ‘local’ analysis, in which circuit robustness is determined for each of the thousands of parameter sets sampled in the global analysis. We apply this method to two prominent, recent models of the cyanobacterial circadian oscillator, an autocatalytic model, and a model centered on consecutive phosphorylation at two sites of the KaiC protein, a key circadian regulator. For these models, we find that the two-sites architecture is much more robust than the autocatalytic one, both globally and locally, based on five different quantifiers of robustness, including robustness to parameter perturbations and to molecular noise. Our ‘glocal’ combination of global and local analyses can also identify key causes of high or low robustness. In doing so, our approach helps to unravel the architectural origin of robust circuit behavior. Complementarily, identifying fragile aspects of system behavior can aid in designing perturbation experiments that may discriminate between competing mechanisms and different parameter sets
- …