440 research outputs found

    Rapidly exploring structural and dynamic properties of signaling networks using PathwayOracle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In systems biology the experimentalist is presented with a selection of software for analyzing dynamic properties of signaling networks. These tools either assume that the network is in steady-state or require highly parameterized models of the network of interest. For biologists interested in assessing how signal propagates through a network under specific conditions, the first class of methods does not provide sufficiently detailed results and the second class requires models which may not be easily and accurately constructed. A tool that is able to characterize the dynamics of a signaling network using an unparameterized model of the network would allow biologists to quickly obtain insights into a signaling network's behavior.</p> <p>Results</p> <p>We introduce <it>PathwayOracle</it>, an integrated suite of software tools for computationally inferring and analyzing structural and dynamic properties of a signaling network. The feature which differentiates <it>PathwayOracle </it>from other tools is a method that can predict the response of a signaling network to various experimental conditions and stimuli using only the connectivity of the signaling network. Thus signaling models are relatively easy to build. The method allows for tracking signal flow in a network and comparison of signal flows under different experimental conditions. In addition, <it>PathwayOracle </it>includes tools for the enumeration and visualization of coherent and incoherent signaling paths between proteins, and for experimental analysis – loading and superimposing experimental data, such as microarray intensities, on the network model.</p> <p>Conclusion</p> <p><it>PathwayOracle </it>provides an integrated environment in which both structural and dynamic analysis of a signaling network can be quickly conducted and visualized along side experimental results. By using the signaling network connectivity, analyses and predictions can be performed quickly using relatively easily constructed signaling network models. The application has been developed in Python and is designed to be easily extensible by groups interested in adding new or extending existing features. <it>PathwayOracle </it>is freely available for download and use.</p

    Inferring metabolic mechanisms of interaction within a defined gut microbiota

    Get PDF
    The diversity and number of species present within microbial communities create the potential for a multitude of interspecies metabolic interactions. Here, we develop, apply, and experimentally test a framework for inferring metabolic mechanisms associated with interspecies interactions. We perform pairwise growth and metabolome profiling of co-cultures of strains from a model mouse microbiota. We then apply our framework to dissect emergent metabolic behaviors that occur in co-culture. Based on one of the inferences from this framework, we identify and interrogate an amino acid cross-feeding interaction and validate that the proposed interaction leads to a growth benefit in vitro. Our results reveal the type and extent of emergent metabolic behavior in microbial communities composed of gut microbes. We focus on growth-modulating interactions, but the framework can be applied to interspecies interactions that modulate any phenotype of interest within microbial communities

    Matrix Formalism to Describe Functional States of Transcriptional Regulatory Systems

    Get PDF
    Complex regulatory networks control the transcription state of a genome. These transcriptional regulatory networks (TRNs) have been mathematically described using a Boolean formalism, in which the state of a gene is represented as either transcribed or not transcribed in response to regulatory signals. The Boolean formalism results in a series of regulatory rules for the individual genes of a TRN that in turn can be used to link environmental cues to the transcription state of a genome, thereby forming a complete transcriptional regulatory system (TRS). Herein, we develop a formalism that represents such a set of regulatory rules in a matrix form. Matrix formalism allows for the systemic characterization of the properties of a TRS and facilitates the computation of the transcriptional state of the genome under any given set of environmental conditions. Additionally, it provides a means to incorporate mechanistic detail of a TRS as it becomes available. In this study, the regulatory network matrix, R, for a prototypic TRS is characterized and the fundamental subspaces of this matrix are described. We illustrate how the matrix representation of a TRS coupled with its environment (R*) allows for a sampling of all possible expression states of a given network, and furthermore, how the fundamental subspaces of the matrix provide a way to study key TRS features and may assist in experimental design

    Exhaustive identification of steady state cycles in large stoichiometric networks

    Get PDF
    BACKGROUND: Identifying cyclic pathways in chemical reaction networks is important, because such cycles may indicate in silico violation of energy conservation, or the existence of feedback in vivo. Unfortunately, our ability to identify cycles in stoichiometric networks, such as signal transduction and genome-scale metabolic networks, has been hampered by the computational complexity of the methods currently used. RESULTS: We describe a new algorithm for the identification of cycles in stoichiometric networks, and we compare its performance to two others by exhaustively identifying the cycles contained in the genome-scale metabolic networks of H. pylori, M. barkeri, E. coli, and S. cerevisiae. Our algorithm can substantially decrease both the execution time and maximum memory usage in comparison to the two previous algorithms. CONCLUSION: The algorithm we describe improves our ability to study large, real-world, biochemical reaction networks, although additional methodological improvements are desirable

    Metabolic network analysis predicts efficacy of FDA-approved drugs targeting the causative agent of a neglected tropical disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Systems biology holds promise as a new approach to drug target identification and drug discovery against neglected tropical diseases. Genome-scale metabolic reconstructions, assembled from annotated genomes and a vast array of bioinformatics/biochemical resources, provide a framework for the interrogation of human pathogens and serve as a platform for generation of future experimental hypotheses. In this article, with the application of selection criteria for both <it>Leishmania major </it>targets (e.g. <it>in silico </it>gene lethality) and drugs (e.g. toxicity), a method (MetDP) to rationally focus on a subset of low-toxic Food and Drug Administration (FDA)-approved drugs is introduced.</p> <p>Results</p> <p>This metabolic network-driven approach identified 15 <it>L. major </it>genes as high-priority targets, 8 high-priority synthetic lethal targets, and 254 FDA-approved drugs. Results were compared to previous literature findings and existing high-throughput screens. Halofantrine, an antimalarial agent that was prioritized using MetDP, showed noticeable antileishmanial activity when experimentally evaluated <it>in vitro </it>against <it>L. major </it>promastigotes. Furthermore, synthetic lethality predictions also aided in the prediction of superadditive drug combinations. For proof-of-concept, double-drug combinations were evaluated <it>in vitro </it>against <it>L. major </it>and four combinations involving the drug disulfiram that showed superadditivity are presented.</p> <p>Conclusions</p> <p>A direct metabolic network-driven method that incorporates single gene essentiality and synthetic lethality predictions is proposed that generates a set of high-priority <it>L. major </it>targets, which are in turn associated with a select number of FDA-approved drugs that are candidate antileishmanials. Additionally, selection of high-priority double-drug combinations might provide for an attractive and alternative avenue for drug discovery against leishmaniasis.</p

    Mid-late Holocene environmental history of Kulunda, southern West Siberia: Vegetation, climate and humans

    Get PDF
    An environmental reconstruction of mid-late Holocene vegetation, climate and lake dynamics was inferred from pollen and diatom records of Lake Big Yarovoe in Kulunda, southern West Siberia. The reconstruction suggests a general prevalence of steppe during the last 4.4 ka. Under a relatively warm and dry climate, open semi-desert and dry steppes with patchy birch forest spread between 4.4 and 3.75 ka BP. The largest development of conifer forest started in Kulunda after 3.75 ka BP. The onset of the Late Holocene is characterised by the dominance of steppe with birch and pine forests in the lowlands and river valleys. After AD 1860, open steppe and semi-desert vegetation with fragmentary birch forest have been dominant in Kulunda, along with a sharp reduction of conifers. These results are in agreement with the general pattern of the Holocene environmental history of the surrounding areas, including the Baraba forest-steppe, Kazakh Upland and Altai Mountains. The penetration of coniferous forest into the Kulunda steppe after 3.75 ka BP was related to its geographical location northwest of the Altai Mountains. The economic activities of the ancient population of Kulunda depended on the environmental changes during the Holocene. © 2012 Elsevier Ltd

    Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major

    Get PDF
    Systems analyses have facilitated the characterization of metabolic networks of several organisms. We have reconstructed the metabolic network of Leishmania major, a poorly characterized organism that causes cutaneous leishmaniasis in mammalian hosts. This network reconstruction accounts for 560 genes, 1112 reactions, 1101 metabolites and 8 unique subcellular localizations. Using a systems-based approach, we hypothesized a comprehensive set of lethal single and double gene deletions, some of which were validated using published data with approximately 70% accuracy. Additionally, we generated hypothetical annotations to dozens of previously uncharacterized genes in the L. major genome and proposed a minimal medium for growth. We further demonstrated the utility of a network reconstruction with two proof-of-concept examples that yielded insight into robustness of the network in the presence of enzymatic inhibitors and delineation of promastigote/amastigote stage-specific metabolism. This reconstruction and the associated network analyses of L. major is the first of its kind for a protozoan. It can serve as a tool for clarifying discrepancies between data sources, generating hypotheses that can be experimentally validated and identifying ideal therapeutic targets

    Deterministic mechanical model of T-killer cell polarization reproduces the wandering of aim between simultaneously engaged targets

    Get PDF
    T-killer cells of the immune system eliminate virus-infected and tumorous cells through direct cell-cell interactions. Reorientation of the killing apparatus inside the T cell to the T-cell interface with the target cell ensures specificity of the immune response. The killing apparatus can also oscillate next to the cell-cell interface. When two target cells are engaged by the T cell simultaneously, the killing apparatus can oscillate between the two interface areas. This oscillation is one of the most striking examples of cell movements that give the microscopist an unmechanistic impression of the cell's fidgety indecision. We have constructed a three-dimensional, numerical biomechanical model of the molecular-motor-driven microtubule cytoskeleton that positions the killing apparatus. The model demonstrates that the cortical pulling mechanism is indeed capable of orienting the killing apparatus into the functional position under a range of conditions. The model also predicts experimentally testable limitations of this commonly hypothesized mechanism of T-cell polarization. After the reorientation, the numerical solution exhibits complex, multidirectional, multiperiodic, and sustained oscillations in the absence of any external guidance or stochasticity. These computational results demonstrate that the strikingly animate wandering of aim in T-killer cells has a purely mechanical and deterministic explanation. © 2009 Kim, Maly

    Anisotropic effect of Cd and Hg doping on Pauli limited superconductor CeCoIn5_5

    Full text link
    We investigated the effect of Cd and Hg doping on the first order superconducting (SC) transition and the high field-low temperature SC state of CeCoIn5_5 by measuring the specific heat of CeCo(In1x_{\rm 1-x}Cdx_{\rm x})5_5 with x=0.0011, 0.0022 and 0.0033 and CeCo(In1x_{\rm 1-x}Hgx_{\rm x})5_5 with x=0.00016, 0.00032, and 0.00048 at temperatures down to 0.1 K and fields up to 14 T. Cd substitution rapidly suppresses the cross-over temperature T0T_{\rm 0}, where the superconducting transition changes from second to first order, to TT=0 K with x=0.0022 for HH\parallel [100], while it remains roughly constant up to x=0.0033 for HH\parallel [001]. The associated anomaly of the proposed FFLO state in Hg-doped samples is washed out by x=0.00048, while remaining at the same temperature, indicating high sensitivity of that state to impurities. We interpret these results as supporting the non-magnetic, possibly FFLO, origin of the high field - low temperature state in CeCoIn5_5
    corecore