26 research outputs found

    Fault Sneaking Attack: a Stealthy Framework for Misleading Deep Neural Networks

    Full text link
    Despite the great achievements of deep neural networks (DNNs), the vulnerability of state-of-the-art DNNs raises security concerns of DNNs in many application domains requiring high reliability.We propose the fault sneaking attack on DNNs, where the adversary aims to misclassify certain input images into any target labels by modifying the DNN parameters. We apply ADMM (alternating direction method of multipliers) for solving the optimization problem of the fault sneaking attack with two constraints: 1) the classification of the other images should be unchanged and 2) the parameter modifications should be minimized. Specifically, the first constraint requires us not only to inject designated faults (misclassifications), but also to hide the faults for stealthy or sneaking considerations by maintaining model accuracy. The second constraint requires us to minimize the parameter modifications (using L0 norm to measure the number of modifications and L2 norm to measure the magnitude of modifications). Comprehensive experimental evaluation demonstrates that the proposed framework can inject multiple sneaking faults without losing the overall test accuracy performance.Comment: Accepted by the 56th Design Automation Conference (DAC 2019

    Model Extraction Warning in MLaaS Paradigm

    Full text link
    Cloud vendors are increasingly offering machine learning services as part of their platform and services portfolios. These services enable the deployment of machine learning models on the cloud that are offered on a pay-per-query basis to application developers and end users. However recent work has shown that the hosted models are susceptible to extraction attacks. Adversaries may launch queries to steal the model and compromise future query payments or privacy of the training data. In this work, we present a cloud-based extraction monitor that can quantify the extraction status of models by observing the query and response streams of both individual and colluding adversarial users. We present a novel technique that uses information gain to measure the model learning rate by users with increasing number of queries. Additionally, we present an alternate technique that maintains intelligent query summaries to measure the learning rate relative to the coverage of the input feature space in the presence of collusion. Both these approaches have low computational overhead and can easily be offered as services to model owners to warn them of possible extraction attacks from adversaries. We present performance results for these approaches for decision tree models deployed on BigML MLaaS platform, using open source datasets and different adversarial attack strategies

    Neural Network Model Extraction Attacks in Edge Devices by Hearing Architectural Hints

    Full text link
    As neural networks continue their reach into nearly every aspect of software operations, the details of those networks become an increasingly sensitive subject. Even those that deploy neural networks embedded in physical devices may wish to keep the inner working of their designs hidden -- either to protect their intellectual property or as a form of protection from adversarial inputs. The specific problem we address is how, through heavy system stack, given noisy and imperfect memory traces, one might reconstruct the neural network architecture including the set of layers employed, their connectivity, and their respective dimension sizes. Considering both the intra-layer architecture features and the inter-layer temporal association information introduced by the DNN design empirical experience, we draw upon ideas from speech recognition to solve this problem. We show that off-chip memory address traces and PCIe events provide ample information to reconstruct such neural network architectures accurately. We are the first to propose such accurate model extraction techniques and demonstrate an end-to-end attack experimentally in the context of an off-the-shelf Nvidia GPU platform with full system stack. Results show that the proposed techniques achieve a high reverse engineering accuracy and improve the one's ability to conduct targeted adversarial attack with success rate from 14.6\%∟\sim25.5\% (without network architecture knowledge) to 75.9\% (with extracted network architecture)
    corecore