
Constrained Concealment Attacks against
Reconstruction-based Anomaly Detectors in

Industrial Control Systems

Alessandro Erba
∗†

alessandro.erba@cispa.saarland

CISPA Helmholtz Center

for Information Security

Saarbrücken, Germany

Riccardo Taormina

r.taormina@tudelft.nl

Delft University of

Technology

Delft, Netherlands

Stefano Galelli

stefano_galelli@sutd.edu.sg

Singapore University of

Technology and Design

Singapore

Marcello Pogliani

marcello.pogliani@polimi.it

Politecnico di Milano

Milan, Italy

Michele Carminati

michele.carminati@polimi.it

Politecnico di Milano

Milan, Italy

Stefano Zanero

stefano.zanero@polimi.it

Politecnico di Milano

Milan, Italy

Nils Ole Tippenhauer

tippenhauer@cispa.saarland

CISPA Helmholtz Center

for Information Security

Saarbrücken, Germany

ABSTRACT
Recently, reconstruction-based anomaly detection was proposed

as an effective technique to detect attacks in dynamic industrial

control networks. Unlike classical network anomaly detectors that

observe the network traffic, reconstruction-based detectors operate

on the measured sensor data, leveraging physical process models

learned a priori.

In this work, we investigate different approaches to evade prior-

work reconstruction-based anomaly detectors by manipulating sen-

sor data so that the attack is concealed. We find that replay attacks

(commonly assumed to be very strong) show bad performance (i.e.,

increasing the number of alarms) if the attacker is constrained to

manipulate less than 95% of all features in the system, as hidden

correlations between the features are not replicated well. To ad-

dress this, we propose two novel attacks that manipulate a subset

of the sensor readings, leveraging learned physical constraints of

the system. Our attacks feature two different attacker models: A

white box attacker, which uses an optimization approach with a

detection oracle, and a black box attacker, which uses an autoen-

coder to translate anomalous data into normal data. We evaluate

our implementation on two different datasets from the water dis-

tribution domain, showing that the detector’s Recall drops from

0.68 to 0.12 by manipulating 4 sensors out of 82 in WADI dataset.

In addition, we show that our black box attacks are transferable to

∗
Also with Saarbrücken Graduate School of Computer Science, Saarland University.

†
A part of this work was done while Alessandro Erba was student at Politecnico di

Milano, visiting SUTD.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ACSAC 2020, December 7–11, 2020, Austin, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8858-0/20/12. . . $15.00

https://doi.org/10.1145/3427228.3427660

different detectors: They work against autoencoder-, LSTM-, and

CNN-based detectors. Finally, we implement and demonstrate our

attacks on a real industrial testbed to demonstrate their feasibility

in real-time.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems; •Com-
puter systems organization→Embedded and cyber-physical
systems; •Computingmethodologies→Anomaly detection;
Neural networks.

KEYWORDS
Industrial Control System, Intrusion Detection, Deep Learning,

Adversarial Machine Learning, Evasion Attack, Classifier Evasion,

Mean Squared Error, Autoencoder, Multivariate Time Series

ACM Reference Format:
Alessandro Erba, Riccardo Taormina, Stefano Galelli, Marcello Pogliani,

Michele Carminati, Stefano Zanero, and Nils Ole Tippenhauer. 2020. Con-

strained Concealment Attacks against Reconstruction-based Anomaly De-

tectors in Industrial Control Systems. In Annual Computer Security Appli-
cations Conference (ACSAC 2020), December 7–11, 2020, Austin, USA. ACM,

New York, NY, USA, 16 pages. https://doi.org/10.1145/3427228.3427660

1 INTRODUCTION
Computational and physical infrastructures are nowadays intercon-

nected. Computers, communication networks, sensors, and actua-

tors allow to control physical processes, resulting in what is known

as cyber-physical systems (CPS). Examples of such systems are

interconnected critical industrial control systems (ICS) like power

grids [36], water supply systems [3], and autonomous vehicles [8].

The integration of modern security features into existing ICS

is challenging, as solutions have to be backward compatible with

decades-old devices in the field, which do not support authentica-

tion or encryption. As a result, attackers with the goal of dam-

aging the process and local access to the network are usually

https://www.acsac.org/2020/submissions/papers/artifacts/
https://doi.org/10.1145/3427228.3427660
https://doi.org/10.1145/3427228.3427660

ACSAC 2020, December 7–11, 2020, Austin, USA A. Erba et al.

assumed to be able to eavesdrop on traffic, send malicious com-

mands to actuators, and spoof sensor values to hide problems in

the physical process [17, 27, 59]. Such activities produce anom-

alies in the physical sensor data that can be successfully lever-

aged for attack detection. Hence, attackers can attempt to conceal

the physical anomalies through replay attacks [39] or through

stealthy attacks based on solving models of the (known) physical

processes [54, 57]. A promising anomaly detection technique in in-

dustrial control systems involves the use of machine learning-based

classifiers and, in particular, reconstruction-based classifiers as pro-

posed in [20, 32, 51]. An attacker who wants to conceal the physical

anomalies from this detector will modify a sample to induce awrong

classification outcome: This can be framed as an Adversarial Ma-

chine Learning (AML) evasion attack. So far, no systematic analysis

of evasion attack against reconstruction-based detectors has been

proposed.

Evasion attacks in the context of ICS (which we call Concealment
Attacks to distinguish them from the general case) face novel and

specific challenges, which make standard AML techniques [26] not

directly applicable. In particular, adversarial examples
1
obtained

with a concealment attack must meet four requirements. R1: Due
to the distributed nature of the system, the attacker is constrained

to manipulate only a subset of features. R2: Adversarial examples

must meet the temporal and spatial correlations expected from the

observed physical processes [24, 53]. Particularly, adversarial ex-

amples must not introduce contextual anomalies (i.e., observations

classified as abnormal only when viewed against other variables

that characterize the behavior of the physical process [24]). R3:
Most AML attacks in other domains target end-to-end Neural Net-

work Classifiers instead of reconstruction-based classifiers. We re-

alized that this requires the attacker to optimize the Mean Squared

Error loss instead of optimizing the cross-entropy loss (Section 4.5).

R4: To the best of our knowledge, previous work either assumes

unlimited computational power to compute ideal pertubations [9]

or assumes static systems that allow universal adversarial pertur-

bations [35, 41]. For real-time attacks
2
on dynamic ICS, neither

approach is feasible, and new solutions are required.

In this work, we propose and evaluate constrained concealment
attacks against reconstruction-based anomaly detectors. To meet R1,

we formalize a detailed attacker model and evaluate different set-

tings relating to attacker constraints, i.e., the number of features

under the control of the attacker. To meet R2, the attacker leverages

passive observation of system behavior to approximate how realis-

tic examples should behave. Based on that, we consider a white box

attacker that can leverage knowledge on the system to perform it-

erative attacks on general reconstruction-based detectors (meeting

R3). Moreover, we consider a black box attacker and show that it is

possible to craft effective adversarial samples in milliseconds (meet-

ing R3 and R4). Our implementation meets all four requirements

for Reconstruction-based detectors.

We summarize our main contributions as follows:

• We propose a detailed attacker model that formalizes implicit

models in prior work, introduce constraints on the attacker

1
We differentiate between sample (original set of sensor readings), and adversarial
example (manipulated set of sensor readings).

2
With real-time, we mean examples are crafted w.r.t. the current dynamic state of the

system, in less time than the sampling rate (e.g., 10ms).

motivated by real-world ICS, and provide an AML taxonomy

for the attacker.

• We show that replay attacks do not conceal anomalies when

the attacker is constrained to manipulate less than 95% of

the ICS features, due to physical correlations that are not

exploited by such attacks.

• We propose and design concealment attacks on ICS process-

based anomaly detectors which produce examples that do

not violate correlations (outperforming replay attacks in

constrained scenarios). A white box attacker exploits the

knowledge of the Anomaly Detection System launching an

iterative attack based on coordinate descent algorithm. A

black box attacker without the knowledge of the Anomaly

Detection System uses learning-based attack leveraging ad-

versarially trained autoencoders
3
.

• We evaluate and discuss the proposed attacks, and compare

their performance against replay attacks. The evaluation is

conducted over a simulated ICS process dataset and a real ICS

process dataset, both containing data of water distribution

systems
4
.

• We practically implement and demonstrate the attacks in

real-word Industrial Control System testbed, and show that

they are possible in real-time.

The remainder of this work is structured as follows. Background

is introduced in Section 2. We present the problem of adversarial

learning attacks on ML-based detectors in Section 3. Our design

is proposed in Section 4, and its implementation and evaluation is

presented in Section 5. We summarize related work in Section 6.

The paper is concluded in Section 7.

2 BACKGROUND
In this section, we provide a brief overview on Industrial Control

Systems and Evasion Attacks. A review of related work is presented

in Section 6.

2.1 Industrial Control Systems
Industrial Control Systems are universally employed to control an

industrial process [18]. In an ICS, Physical components include the

hardware equipment required to execute the process; among these,

actuators and sensors represent the junction point between Cyber
and Physical components. Cyber components comprise the com-

puter hardware and software that is deployed to execute the plant

control logic and monitoring. Typical industrial control hardware

contain Programmable Logic Controllers (PLCs) and a Supervi-

sory Control and Data Acquisition (SCADA) system. In an ICS,

one or more PLCs implement the process control logic by moni-

toring sensor values and sending commands to actuators. Sensor

values and actuator states are reported from PLC to the SCADA

system. In a distributed ICS, several PLCs control the system; tak-

ing control of a sub-process governed by a single PLC can dis-

rupt the system. Attacks targeting both the cyber and physical

components of industrial processes have occurred during the past

decades. A notable example is Stuxnet [59], an attack that targeted

the physical part of an ICS to reduce rotation frequencies of nuclear

3
Note: Not to be confused with Adversarial Autoencoders [38].

4
Implementation available at https://github.com/scy-phy/ICS-Evasion-Attacks

https://github.com/scy-phy/ICS-Evasion-Attacks

Constrained Concealment Attacks against Reconstruction-based detectors in ICS ACSAC 2020, December 7–11, 2020, Austin, USA

Figure 1: High level system and attackermodel. The PLCs re-
port sensor data about the anomalous process to the SCADA.
The attacker can eavesdrop and manipulate a subset of the
data provided to the SCADA. The reconstruction-based de-
tector attempts to detect attacks based on a learned model
of the system’s benign operations.

centrifuges, and the cyber component to spoof reported sensor

readings (via a man-in-the-middle attack) thus avoiding anomaly

detection.

2.2 Evasion Attacks
In AML, an evasion attack is launched by an adversary to control

the output behavior of a machine learning model through crafted

inputs i.e., adversarial examples. Several evasion attack and defense

mechanisms have been proposed in the context of image process-

ing [50], speech recognition [11] and malware detection [22].

The authors of [6] characterize attacks on machine learning

models using a 4-tuple representation of the attackers’ knowledge

of the system under attack, the training dataset D, the feature set

X, the learning algorithm f , and the trained parametersw . In an

adversarial setting, an attacker has complete or partial knowledge

of components; partial knowledge of a component is denoted with

the symbols
ˆD,

ˆX, ˆf and ŵ respectively. In particular, the authors

characterize three types of attack scenarios: Perfect-knowledge

white box attackers (D,X, f ,w); Limited-knowledge gray box at-

tacks (ˆD,X, f , ŵ); Zero-knowledge black box attacks (ˆD, ˆX, ˆf , ŵ).
Attacks are achieved by solving an optimization problem that min-

imizes distance between the sample and the adversarial example

e.g. by minimizing norms: L0, L2, L∞. In Section 3, we use this

notation to introduce our proposed solution and position it within

the related literature.

3 CONCEALMENT ATTACKS ON
RECONSTRUCTION-BASED ANOMALY
DETECTION

In this section, we introduce our system and attacker model, and

our general problem statement for constrained concealment attacks.

Then, we present our abstract white and black box attacker model.

3.1 System Model
We consider a system under attack (Figure 1) consisting of several

sensors and actuators connected to one or more PLCs, which are

in turn connected to a SCADA system that gathers data from the

PLCs. In our work, we assume that the SCADA is passive, so it does

not send control commands to the PLCs (e.g., to actively probe for

manipulations), or uses steganographic approaches to authenticate

sensor readings [40]. The SCADA feeds an attack detection system,

whose goal is to accurately identify the instances in which the

attacker manipulates the physical process while minimizing the

number of false detections. The attack detection system generally

consists of two main components: a system model, which is used to

generate additional features, and a classifier, which (for each time

step) classifies the system as either under attack or under normal

operating conditions (see Section 6 for more details on classifiers

in this context). During the attack, the physical process may be

in an anomalous state, which will be detected unless the attacker

manages to conceal it. The anomalies themselves are out of the

scope of this work; we use prior-work datasets [28, 53].

To the best of our knowledge, our work is the first one that

enables the use of constraints on the number of sensors that can be

manipulated by an attacker (see Section 3.2). As we will show, the

performance of the attack degrades when lowering the number of

channels that are under the attacker’s control. Fully authenticated

sensor signals would eventually prevent the attack to occur at

the process level, but would impose cost on the normal system

operations. Since our attacks exploit sensor signals received by the

detector, they can be deployed somewhere else w.r.t. the industrial

plant. Software exploits on the machine running the detector or

historian server could also offer the attack surface to mount our

proposed concealment attacks (those alternative attacker models

are not modeled here for the sake of simplicity).

3.2 Attacker Model
3.2.1 Attacker Goal and Capabilities. The goal of the attacker is to
launch a concealment attack on an ICS to hide the real state of the

process from an anomaly detector. The modeled attacker is assumed

to have access to the ICS network, e.g., by physically attaching

malicious devices to the network, intercepting communications to

selected remote substations, or performing a Man-in-the-PLC [17]

attack. The attacker is thus assumed to control a subset of the

communication between PLCs and the SCADA system, and as a

result, able to eavesdrop on traffic and send manipulated sensor

readings to the detector. PLC communication with the SCADA

system can be exploited to hide the real state of the system as

practically demonstrated in [17]. In contrast to [17], our attacker

does not require explicit knowledge of the physical model equations

to conceal the anomalies.

In particular, we assume that the anomalous physical process

results in a feature vector ®x , which triggers the detection system.

The attacker thus needs to find an alternative vector ®x ′, which pre-

vents detection of the attack. We formalize the concelament attack
as follows: given a feature vector ®x and a classification function

y() s.t. the detector correctly classifies y(®x) = ‘under attack’, the

attacker is looking for a perturbation ®x + ®δ s.t.y(®x + ®δ) =‘safe’. Since
the attacker’s goal is to evade Mean Squared Error-based classifiers,

the adversarial attack has to find a perturbation
®δ to minimize the

reconstruction error between the input ®x + δ and output
ˆ®x of the

Reconstruction-based detector. Please refer to Section 4.1 for fur-

ther details on the target model. In a mathematical notation, it can

be written as the following constrained optimization problem in

Equation 1:

ACSAC 2020, December 7–11, 2020, Austin, USA A. Erba et al.

Table 1: Classification of our attacker models based on
training data and features, Data tuple (D,X) and algorithm
knowledge and parameters. Access:

ACSAC 2020, December 7–11, 2020, Austin, USA A. Erba et al.

Table 1: Classification of our attacker models based on
training data and features, Data tuple (D,X) and algorithm
knowledge and parameters. Access: =full,G#=partial. For all
white box attacks, the Defense tuple is (f ,w), for all black
box attacks, (��AAˆf ,�Ẑw).

Attacker’s X

Constraints D Read Write

Unconstrained § 5.4
X Partially § 5.5 G#
X Fully § 5.5 G# G#

D § 5.5 G#

the adversarial attack has to find a perturbation
®δ to minimize the

reconstruction error between the input ®x + δ and output
ˆ®x of the

Reconstruction-based detector. Please refer to Section 4.1 for fur-

ther details on the target model. In a mathematical notation, it can

be written as the following constrained optimization problem in

Equation 1:

minimize MSE =
1

n

n∑
i=1

(x̂i − (xi + δi))
2

s.t.
®δ ∈ constraint space (Section 3.2.2)

real-time constraints imposed by CPS

y(®x + ®δ) = ‘safe’

(1)

We note that the attacks we demonstrate are not necessarily op-

timal, as the constraints are satisfied with non unique solutions.The

attacks are conducted in real-time (i.e., in milliseconds per time

step), not a posteriori (i.e., applied retrospectively to a longer se-

quence of sensor readings after the attacker fully receives them).

3.2.2 Attacker Knowledge. Using the adversarial learning notation

introduced in Section 2, a concealment attack is characterized by

the knowledge of the attacker about the training datasetD, feature

set X, learning algorithm f , and trained parametersw . In the ICS

setting, the attacker can be characterized differently according

to his knowledge of the attacked system. In order to explain our

attacker model, we split the tuple (D,X, f ,w) into two: the Data

tuple (D,X) and Defense tuple (f ,w). We assume the attacker

to be unconstrained or constrained w.r.t. the Data tuple, i.e., the

sensor readings X that she can observe and manipulate and the

data D that she eavesdrops. Moreover, we classify attackers as

white box, black box, w.r.t. the Defense tuple, i.e., the knowledge of
learning algorithm f , and trained parametersw . Table 1, provides

an overview of the attacker’s constraints considered in this work.

Constraints over Data Tuple.According to the Data tuple (D,X),
we classify the attacker as:

• Unconstrained (D,X), in which the attacker can manipulate

all n features in ®x , and her perturbations are limited in terms

of L0 distance to be at most n.
• Features Partially Constrained (D, ˆX), we assume that the

attacker is constrained to perturb a subset of k out of n
variables in ®x , and her perturbations are limited in terms of

L0 distance to not exceed distance k .

• Features Fully-Constrained (D, ˆX), we assume that the at-

tacker is constrained to observe and perturb a subset of k
out of n variables in ®x , and her perturbations are limited in

terms of L0 distance to not exceed distance k .
• Data Constrained (ˆD,X), we assume that the attacker is

constrained to eavesdrop a limited quantity of process data

that are used for training its attacks.

Selection of Constrained Features The subset of features that can
bemodified is highly use-case dependent (i.e., which link is attacked,

which device was compromised). To demonstrate the generality

of our findings, we explored two types of constraints: a best-case

scenario and a topology-based scenario.

For the best-case scenario, we assume that the selection of the

k out of n manipulated features can be made by the attacker to

maximize the attack impact. This arguably represents a best-case

scenario for the constrained attacker (i.e., an attacker constrained to

features that happen to be relatively ideal for the attacker). For the

second scenario, constraints are derived from the network topology.

We assume that the attacker can compromise a single substation

(or PLC) in the network, and the selection of k out of n features

is based on which sensors are interconnected to the compromised

substation.

Knowledge of Defense Tuple. We classify the attacker according

to their knowledge of the Defense tuple (f ,w), as:

• White box (f ,w), the attacker knows the exact system model

and its variables (such as the currently estimated system

state), and the exact thresholds of the classification system.

Thus, the white box attacker is characterized by the knowl-

edge of (f ,w). With that information, the attacker could ei-

ther run a basic exhaustive search, basic optimization strate-

gies, or more sophisticated approaches (especially solutions

that use the gradient signal from the attacked model).

• Black box (��AA
ˆf ,�Ẑw), the attacker is aware of the general de-

tection scheme, but unaware of internal variables, architec-

ture and exact thresholds used in the classification. We note

that our black box attacker is different from the one defined

in [6], (ˆf , ŵ). Our attacker does not require the knowledge

of f or its approximation
ˆf . In our case, the nature of the

environment imposes that the attacker cannot query the

system even in a black box manner to get feedback on the

provided labels or confidence scores (this is done for example

in [12, 14, 56, 61]), as this would mean potentially raising

the alarm. Thus, we consider that the only assumption of

the attacker concerning f is that Deep Learning techniques

are used for detection.

Given this taxonomy, the attacker can be classified for example,

as unconstrained white box.

3.3 Example Constraint Scenarios
We argue our Constrained and Unconstrained attacks represent

a realistic threat model in the ICS setting and fit the taxonomy

of attacks in the AML literature. In particular, practical ICS are

typically composed of multiple stages, and each stage is controlled

by a different PLC (i.e., different brands/models). Moreover, the ICS

can be deployed in a physically distributed manner. For example,

=full,

ACSAC 2020, December 7–11, 2020, Austin, USA A. Erba et al.

Table 1: Classification of our attacker models based on
training data and features, Data tuple (D,X) and algorithm
knowledge and parameters. Access: =full,G#=partial. For all
white box attacks, the Defense tuple is (f ,w), for all black
box attacks, (��AAˆf ,�Ẑw).

Attacker’s X

Constraints D Read Write

Unconstrained § 5.4
X Partially § 5.5 G#
X Fully § 5.5 G# G#

D § 5.5 G#

the adversarial attack has to find a perturbation
®δ to minimize the

reconstruction error between the input ®x + δ and output
ˆ®x of the

Reconstruction-based detector. Please refer to Section 4.1 for fur-

ther details on the target model. In a mathematical notation, it can

be written as the following constrained optimization problem in

Equation 1:

minimize MSE =
1

n

n∑
i=1

(x̂i − (xi + δi))
2

s.t.
®δ ∈ constraint space (Section 3.2.2)

real-time constraints imposed by CPS

y(®x + ®δ) = ‘safe’

(1)

We note that the attacks we demonstrate are not necessarily op-

timal, as the constraints are satisfied with non unique solutions.The

attacks are conducted in real-time (i.e., in milliseconds per time

step), not a posteriori (i.e., applied retrospectively to a longer se-

quence of sensor readings after the attacker fully receives them).

3.2.2 Attacker Knowledge. Using the adversarial learning notation

introduced in Section 2, a concealment attack is characterized by

the knowledge of the attacker about the training datasetD, feature

set X, learning algorithm f , and trained parametersw . In the ICS

setting, the attacker can be characterized differently according

to his knowledge of the attacked system. In order to explain our

attacker model, we split the tuple (D,X, f ,w) into two: the Data

tuple (D,X) and Defense tuple (f ,w). We assume the attacker

to be unconstrained or constrained w.r.t. the Data tuple, i.e., the

sensor readings X that she can observe and manipulate and the

data D that she eavesdrops. Moreover, we classify attackers as

white box, black box, w.r.t. the Defense tuple, i.e., the knowledge of
learning algorithm f , and trained parametersw . Table 1, provides

an overview of the attacker’s constraints considered in this work.

Constraints over Data Tuple.According to the Data tuple (D,X),
we classify the attacker as:

• Unconstrained (D,X), in which the attacker can manipulate

all n features in ®x , and her perturbations are limited in terms

of L0 distance to be at most n.
• Features Partially Constrained (D, ˆX), we assume that the

attacker is constrained to perturb a subset of k out of n
variables in ®x , and her perturbations are limited in terms of

L0 distance to not exceed distance k .

• Features Fully-Constrained (D, ˆX), we assume that the at-

tacker is constrained to observe and perturb a subset of k
out of n variables in ®x , and her perturbations are limited in

terms of L0 distance to not exceed distance k .
• Data Constrained (ˆD,X), we assume that the attacker is

constrained to eavesdrop a limited quantity of process data

that are used for training its attacks.

Selection of Constrained Features The subset of features that can
bemodified is highly use-case dependent (i.e., which link is attacked,

which device was compromised). To demonstrate the generality

of our findings, we explored two types of constraints: a best-case

scenario and a topology-based scenario.

For the best-case scenario, we assume that the selection of the

k out of n manipulated features can be made by the attacker to

maximize the attack impact. This arguably represents a best-case

scenario for the constrained attacker (i.e., an attacker constrained to

features that happen to be relatively ideal for the attacker). For the

second scenario, constraints are derived from the network topology.

We assume that the attacker can compromise a single substation

(or PLC) in the network, and the selection of k out of n features

is based on which sensors are interconnected to the compromised

substation.

Knowledge of Defense Tuple. We classify the attacker according

to their knowledge of the Defense tuple (f ,w), as:

• White box (f ,w), the attacker knows the exact system model

and its variables (such as the currently estimated system

state), and the exact thresholds of the classification system.

Thus, the white box attacker is characterized by the knowl-

edge of (f ,w). With that information, the attacker could ei-

ther run a basic exhaustive search, basic optimization strate-

gies, or more sophisticated approaches (especially solutions

that use the gradient signal from the attacked model).

• Black box (��AA
ˆf ,�Ẑw), the attacker is aware of the general de-

tection scheme, but unaware of internal variables, architec-

ture and exact thresholds used in the classification. We note

that our black box attacker is different from the one defined

in [6], (ˆf , ŵ). Our attacker does not require the knowledge

of f or its approximation
ˆf . In our case, the nature of the

environment imposes that the attacker cannot query the

system even in a black box manner to get feedback on the

provided labels or confidence scores (this is done for example

in [12, 14, 56, 61]), as this would mean potentially raising

the alarm. Thus, we consider that the only assumption of

the attacker concerning f is that Deep Learning techniques

are used for detection.

Given this taxonomy, the attacker can be classified for example,

as unconstrained white box.

3.3 Example Constraint Scenarios
We argue our Constrained and Unconstrained attacks represent

a realistic threat model in the ICS setting and fit the taxonomy

of attacks in the AML literature. In particular, practical ICS are

typically composed of multiple stages, and each stage is controlled

by a different PLC (i.e., different brands/models). Moreover, the ICS

can be deployed in a physically distributed manner. For example,

=partial. For
all white box attacks, the Defense tuple is (f ,w), for all black
box attacks, (

ACSAC 2020, December 7–11, 2020, Austin, USA A. Erba et al.

Table 1: Classification of our attacker models based on
training data and features, Data tuple (D,X) and algorithm
knowledge and parameters. Access:

ACSAC 2020, December 7–11, 2020, Austin, USA A. Erba et al.

Table 1: Classification of our attacker models based on
training data and features, Data tuple (D,X) and algorithm
knowledge and parameters. Access: =full,G#=partial. For all
white box attacks, the Defense tuple is (f ,w), for all black
box attacks, (��AAˆf ,�Ẑw).

Attacker’s X

Constraints D Read Write

Unconstrained § 5.4
X Partially § 5.5 G#
X Fully § 5.5 G# G#

D § 5.5 G#

the adversarial attack has to find a perturbation
®δ to minimize the

reconstruction error between the input ®x + δ and output
ˆ®x of the

Reconstruction-based detector. Please refer to Section 4.1 for fur-

ther details on the target model. In a mathematical notation, it can

be written as the following constrained optimization problem in

Equation 1:

minimize MSE =
1

n

n∑
i=1

(x̂i − (xi + δi))
2

s.t.
®δ ∈ constraint space (Section 3.2.2)

real-time constraints imposed by CPS

y(®x + ®δ) = ‘safe’

(1)

We note that the attacks we demonstrate are not necessarily op-

timal, as the constraints are satisfied with non unique solutions.The

attacks are conducted in real-time (i.e., in milliseconds per time

step), not a posteriori (i.e., applied retrospectively to a longer se-

quence of sensor readings after the attacker fully receives them).

3.2.2 Attacker Knowledge. Using the adversarial learning notation

introduced in Section 2, a concealment attack is characterized by

the knowledge of the attacker about the training datasetD, feature

set X, learning algorithm f , and trained parametersw . In the ICS

setting, the attacker can be characterized differently according

to his knowledge of the attacked system. In order to explain our

attacker model, we split the tuple (D,X, f ,w) into two: the Data

tuple (D,X) and Defense tuple (f ,w). We assume the attacker

to be unconstrained or constrained w.r.t. the Data tuple, i.e., the

sensor readings X that she can observe and manipulate and the

data D that she eavesdrops. Moreover, we classify attackers as

white box, black box, w.r.t. the Defense tuple, i.e., the knowledge of
learning algorithm f , and trained parametersw . Table 1, provides

an overview of the attacker’s constraints considered in this work.

Constraints over Data Tuple.According to the Data tuple (D,X),
we classify the attacker as:

• Unconstrained (D,X), in which the attacker can manipulate

all n features in ®x , and her perturbations are limited in terms

of L0 distance to be at most n.
• Features Partially Constrained (D, ˆX), we assume that the

attacker is constrained to perturb a subset of k out of n
variables in ®x , and her perturbations are limited in terms of

L0 distance to not exceed distance k .

• Features Fully-Constrained (D, ˆX), we assume that the at-

tacker is constrained to observe and perturb a subset of k
out of n variables in ®x , and her perturbations are limited in

terms of L0 distance to not exceed distance k .
• Data Constrained (ˆD,X), we assume that the attacker is

constrained to eavesdrop a limited quantity of process data

that are used for training its attacks.

Selection of Constrained Features The subset of features that can
bemodified is highly use-case dependent (i.e., which link is attacked,

which device was compromised). To demonstrate the generality

of our findings, we explored two types of constraints: a best-case

scenario and a topology-based scenario.

For the best-case scenario, we assume that the selection of the

k out of n manipulated features can be made by the attacker to

maximize the attack impact. This arguably represents a best-case

scenario for the constrained attacker (i.e., an attacker constrained to

features that happen to be relatively ideal for the attacker). For the

second scenario, constraints are derived from the network topology.

We assume that the attacker can compromise a single substation

(or PLC) in the network, and the selection of k out of n features

is based on which sensors are interconnected to the compromised

substation.

Knowledge of Defense Tuple. We classify the attacker according

to their knowledge of the Defense tuple (f ,w), as:

• White box (f ,w), the attacker knows the exact system model

and its variables (such as the currently estimated system

state), and the exact thresholds of the classification system.

Thus, the white box attacker is characterized by the knowl-

edge of (f ,w). With that information, the attacker could ei-

ther run a basic exhaustive search, basic optimization strate-

gies, or more sophisticated approaches (especially solutions

that use the gradient signal from the attacked model).

• Black box (��AA
ˆf ,�Ẑw), the attacker is aware of the general de-

tection scheme, but unaware of internal variables, architec-

ture and exact thresholds used in the classification. We note

that our black box attacker is different from the one defined

in [6], (ˆf , ŵ). Our attacker does not require the knowledge

of f or its approximation
ˆf . In our case, the nature of the

environment imposes that the attacker cannot query the

system even in a black box manner to get feedback on the

provided labels or confidence scores (this is done for example

in [12, 14, 56, 61]), as this would mean potentially raising

the alarm. Thus, we consider that the only assumption of

the attacker concerning f is that Deep Learning techniques

are used for detection.

Given this taxonomy, the attacker can be classified for example,

as unconstrained white box.

3.3 Example Constraint Scenarios
We argue our Constrained and Unconstrained attacks represent

a realistic threat model in the ICS setting and fit the taxonomy

of attacks in the AML literature. In particular, practical ICS are

typically composed of multiple stages, and each stage is controlled

by a different PLC (i.e., different brands/models). Moreover, the ICS

can be deployed in a physically distributed manner. For example,

=full,

ACSAC 2020, December 7–11, 2020, Austin, USA A. Erba et al.

Table 1: Classification of our attacker models based on
training data and features, Data tuple (D,X) and algorithm
knowledge and parameters. Access: =full,G#=partial. For all
white box attacks, the Defense tuple is (f ,w), for all black
box attacks, (��AAˆf ,�Ẑw).

Attacker’s X

Constraints D Read Write

Unconstrained § 5.4
X Partially § 5.5 G#
X Fully § 5.5 G# G#

D § 5.5 G#

the adversarial attack has to find a perturbation
®δ to minimize the

reconstruction error between the input ®x + δ and output
ˆ®x of the

Reconstruction-based detector. Please refer to Section 4.1 for fur-

ther details on the target model. In a mathematical notation, it can

be written as the following constrained optimization problem in

Equation 1:

minimize MSE =
1

n

n∑
i=1

(x̂i − (xi + δi))
2

s.t.
®δ ∈ constraint space (Section 3.2.2)

real-time constraints imposed by CPS

y(®x + ®δ) = ‘safe’

(1)

We note that the attacks we demonstrate are not necessarily op-

timal, as the constraints are satisfied with non unique solutions.The

attacks are conducted in real-time (i.e., in milliseconds per time

step), not a posteriori (i.e., applied retrospectively to a longer se-

quence of sensor readings after the attacker fully receives them).

3.2.2 Attacker Knowledge. Using the adversarial learning notation

introduced in Section 2, a concealment attack is characterized by

the knowledge of the attacker about the training datasetD, feature

set X, learning algorithm f , and trained parametersw . In the ICS

setting, the attacker can be characterized differently according

to his knowledge of the attacked system. In order to explain our

attacker model, we split the tuple (D,X, f ,w) into two: the Data

tuple (D,X) and Defense tuple (f ,w). We assume the attacker

to be unconstrained or constrained w.r.t. the Data tuple, i.e., the

sensor readings X that she can observe and manipulate and the

data D that she eavesdrops. Moreover, we classify attackers as

white box, black box, w.r.t. the Defense tuple, i.e., the knowledge of
learning algorithm f , and trained parametersw . Table 1, provides

an overview of the attacker’s constraints considered in this work.

Constraints over Data Tuple.According to the Data tuple (D,X),
we classify the attacker as:

• Unconstrained (D,X), in which the attacker can manipulate

all n features in ®x , and her perturbations are limited in terms

of L0 distance to be at most n.
• Features Partially Constrained (D, ˆX), we assume that the

attacker is constrained to perturb a subset of k out of n
variables in ®x , and her perturbations are limited in terms of

L0 distance to not exceed distance k .

• Features Fully-Constrained (D, ˆX), we assume that the at-

tacker is constrained to observe and perturb a subset of k
out of n variables in ®x , and her perturbations are limited in

terms of L0 distance to not exceed distance k .
• Data Constrained (ˆD,X), we assume that the attacker is

constrained to eavesdrop a limited quantity of process data

that are used for training its attacks.

Selection of Constrained Features The subset of features that can
bemodified is highly use-case dependent (i.e., which link is attacked,

which device was compromised). To demonstrate the generality

of our findings, we explored two types of constraints: a best-case

scenario and a topology-based scenario.

For the best-case scenario, we assume that the selection of the

k out of n manipulated features can be made by the attacker to

maximize the attack impact. This arguably represents a best-case

scenario for the constrained attacker (i.e., an attacker constrained to

features that happen to be relatively ideal for the attacker). For the

second scenario, constraints are derived from the network topology.

We assume that the attacker can compromise a single substation

(or PLC) in the network, and the selection of k out of n features

is based on which sensors are interconnected to the compromised

substation.

Knowledge of Defense Tuple. We classify the attacker according

to their knowledge of the Defense tuple (f ,w), as:

• White box (f ,w), the attacker knows the exact system model

and its variables (such as the currently estimated system

state), and the exact thresholds of the classification system.

Thus, the white box attacker is characterized by the knowl-

edge of (f ,w). With that information, the attacker could ei-

ther run a basic exhaustive search, basic optimization strate-

gies, or more sophisticated approaches (especially solutions

that use the gradient signal from the attacked model).

• Black box (��AA
ˆf ,�Ẑw), the attacker is aware of the general de-

tection scheme, but unaware of internal variables, architec-

ture and exact thresholds used in the classification. We note

that our black box attacker is different from the one defined

in [6], (ˆf , ŵ). Our attacker does not require the knowledge

of f or its approximation
ˆf . In our case, the nature of the

environment imposes that the attacker cannot query the

system even in a black box manner to get feedback on the

provided labels or confidence scores (this is done for example

in [12, 14, 56, 61]), as this would mean potentially raising

the alarm. Thus, we consider that the only assumption of

the attacker concerning f is that Deep Learning techniques

are used for detection.

Given this taxonomy, the attacker can be classified for example,

as unconstrained white box.

3.3 Example Constraint Scenarios
We argue our Constrained and Unconstrained attacks represent

a realistic threat model in the ICS setting and fit the taxonomy

of attacks in the AML literature. In particular, practical ICS are

typically composed of multiple stages, and each stage is controlled

by a different PLC (i.e., different brands/models). Moreover, the ICS

can be deployed in a physically distributed manner. For example,

=partial. For
all white box attacks, the Defense tuple is (f ,w), for all black
box attacks, ��AA

ˆf �Ẑw

Attacker’s X

Constraints D Read Write

Unconstrained § 5.4
X Partially § 5.5 G#
X Fully § 5.5 G# G#

D § 5.5 G#

the adversarial attack has to find a perturbation
®δ to minimize the

reconstruction error between the input ®x + δ and output
ˆ®x of the

Reconstruction-based detector. Please refer to Section 4.1 for fur-

ther details on the target model. In a mathematical notation, it can

be written as the following constrained optimization problem in

Equation 1:

minimize MSE =
1

n

n∑
i=1

(x̂i − (xi + δi))
2

s.t.
®δ ∈ constraint space (Section 3.2.2)

real-time constraints imposed by CPS

y(®x + ®δ) = ‘safe’

(1)

We note that the attacks we demonstrate are not necessarily op-

timal, as the constraints are satisfied with non unique solutions.The

attacks are conducted in real-time (i.e., in milliseconds per time

step), not a posteriori (i.e., applied retrospectively to a longer se-

quence of sensor readings after the attacker fully receives them).

3.2.2 Attacker Knowledge. Using the adversarial learning notation

introduced in Section 2, a concealment attack is characterized by

the knowledge of the attacker about the training datasetD, feature

set X, learning algorithm f , and trained parametersw . In the ICS

setting, the attacker can be characterized differently according

to his knowledge of the attacked system. In order to explain our

attacker model, we split the tuple (D,X, f ,w) into two: the Data

tuple (D,X) and Defense tuple (f ,w). We assume the attacker

to be unconstrained or constrained w.r.t. the Data tuple, i.e., the

sensor readings X that she can observe and manipulate and the

data D that she eavesdrops. Moreover, we classify attackers as

white box, black box, w.r.t. the Defense tuple, i.e., the knowledge of
learning algorithm f , and trained parametersw . Table 1, provides

an overview of the attacker’s constraints considered in this work.

Constraints over Data Tuple.According to the Data tuple (D,X),
we classify the attacker as:

• Unconstrained (D,X), in which the attacker can manipulate

all n features in ®x , and her perturbations are limited in terms

of L0 distance to be at most n.
• Features Partially Constrained (D, ˆX), we assume that the

attacker is constrained to perturb a subset of k out of n
variables in ®x , and her perturbations are limited in terms of

L0 distance to not exceed distance k .

• Features Fully-Constrained (D, ˆX), we assume that the at-

tacker is constrained to observe and perturb a subset of k
out of n variables in ®x , and her perturbations are limited in

terms of L0 distance to not exceed distance k .
• Data Constrained (ˆD,X), we assume that the attacker is

constrained to eavesdrop a limited quantity of process data

that are used for training its attacks.

Selection of Constrained Features The subset of features that can
bemodified is highly use-case dependent (i.e., which link is attacked,

which device was compromised). To demonstrate the generality

of our findings, we explored two types of constraints: a best-case

scenario and a topology-based scenario.

For the best-case scenario, we assume that the selection of the

k out of n manipulated features can be made by the attacker to

maximize the attack impact. This arguably represents a best-case

scenario for the constrained attacker (i.e., an attacker constrained to

features that happen to be relatively ideal for the attacker). For the

second scenario, constraints are derived from the network topology.

We assume that the attacker can compromise a single substation

(or PLC) in the network, and the selection of k out of n features

is based on which sensors are interconnected to the compromised

substation.

Knowledge of Defense Tuple. We classify the attacker according

to their knowledge of the Defense tuple (f ,w), as:

• White box (f ,w), the attacker knows the exact system model

and its variables (such as the currently estimated system

state), and the exact thresholds of the classification system.

Thus, the white box attacker is characterized by the knowl-

edge of (f ,w). With that information, the attacker could ei-

ther run a basic exhaustive search, basic optimization strate-

gies, or more sophisticated approaches (especially solutions

that use the gradient signal from the attacked model).

• Black box (��AA
ˆf ,�Ẑw), the attacker is aware of the general de-

tection scheme, but unaware of internal variables, architec-

ture and exact thresholds used in the classification. We note

that our black box attacker is different from the one defined

in [6], (ˆf , ŵ). Our attacker does not require the knowledge

of f or its approximation
ˆf . In our case, the nature of the

environment imposes that the attacker cannot query the

system even in a black box manner to get feedback on the

provided labels or confidence scores (this is done for example

in [12, 14, 56, 61]), as this would mean potentially raising

the alarm. Thus, we consider that the only assumption of

the attacker concerning f is that Deep Learning techniques

are used for detection.

Given this taxonomy, the attacker can be classified for example,

as unconstrained white box.

3.3 Example Constraint Scenarios
We argue our Constrained and Unconstrained attacks represent

a realistic threat model in the ICS setting and fit the taxonomy

of attacks in the AML literature. In particular, practical ICS are

typically composed of multiple stages, and each stage is controlled

by a different PLC (i.e., different brands/models). Moreover, the ICS

can be deployed in a physically distributed manner. For example,

,

ACSAC 2020, December 7–11, 2020, Austin, USA A. Erba et al.

Table 1: Classification of our attacker models based on
training data and features, Data tuple (D,X) and algorithm
knowledge and parameters. Access:

ACSAC 2020, December 7–11, 2020, Austin, USA A. Erba et al.

Table 1: Classification of our attacker models based on
training data and features, Data tuple (D,X) and algorithm
knowledge and parameters. Access: =full,G#=partial. For all
white box attacks, the Defense tuple is (f ,w), for all black
box attacks, (��AAˆf ,�Ẑw).

Attacker’s X

Constraints D Read Write

Unconstrained § 5.4
X Partially § 5.5 G#
X Fully § 5.5 G# G#

D § 5.5 G#

the adversarial attack has to find a perturbation
®δ to minimize the

reconstruction error between the input ®x + δ and output
ˆ®x of the

Reconstruction-based detector. Please refer to Section 4.1 for fur-

ther details on the target model. In a mathematical notation, it can

be written as the following constrained optimization problem in

Equation 1:

minimize MSE =
1

n

n∑
i=1

(x̂i − (xi + δi))
2

s.t.
®δ ∈ constraint space (Section 3.2.2)

real-time constraints imposed by CPS

y(®x + ®δ) = ‘safe’

(1)

We note that the attacks we demonstrate are not necessarily op-

timal, as the constraints are satisfied with non unique solutions.The

attacks are conducted in real-time (i.e., in milliseconds per time

step), not a posteriori (i.e., applied retrospectively to a longer se-

quence of sensor readings after the attacker fully receives them).

3.2.2 Attacker Knowledge. Using the adversarial learning notation

introduced in Section 2, a concealment attack is characterized by

the knowledge of the attacker about the training datasetD, feature

set X, learning algorithm f , and trained parametersw . In the ICS

setting, the attacker can be characterized differently according

to his knowledge of the attacked system. In order to explain our

attacker model, we split the tuple (D,X, f ,w) into two: the Data

tuple (D,X) and Defense tuple (f ,w). We assume the attacker

to be unconstrained or constrained w.r.t. the Data tuple, i.e., the

sensor readings X that she can observe and manipulate and the

data D that she eavesdrops. Moreover, we classify attackers as

white box, black box, w.r.t. the Defense tuple, i.e., the knowledge of
learning algorithm f , and trained parametersw . Table 1, provides

an overview of the attacker’s constraints considered in this work.

Constraints over Data Tuple.According to the Data tuple (D,X),
we classify the attacker as:

• Unconstrained (D,X), in which the attacker can manipulate

all n features in ®x , and her perturbations are limited in terms

of L0 distance to be at most n.
• Features Partially Constrained (D, ˆX), we assume that the

attacker is constrained to perturb a subset of k out of n
variables in ®x , and her perturbations are limited in terms of

L0 distance to not exceed distance k .

• Features Fully-Constrained (D, ˆX), we assume that the at-

tacker is constrained to observe and perturb a subset of k
out of n variables in ®x , and her perturbations are limited in

terms of L0 distance to not exceed distance k .
• Data Constrained (ˆD,X), we assume that the attacker is

constrained to eavesdrop a limited quantity of process data

that are used for training its attacks.

Selection of Constrained Features The subset of features that can
bemodified is highly use-case dependent (i.e., which link is attacked,

which device was compromised). To demonstrate the generality

of our findings, we explored two types of constraints: a best-case

scenario and a topology-based scenario.

For the best-case scenario, we assume that the selection of the

k out of n manipulated features can be made by the attacker to

maximize the attack impact. This arguably represents a best-case

scenario for the constrained attacker (i.e., an attacker constrained to

features that happen to be relatively ideal for the attacker). For the

second scenario, constraints are derived from the network topology.

We assume that the attacker can compromise a single substation

(or PLC) in the network, and the selection of k out of n features

is based on which sensors are interconnected to the compromised

substation.

Knowledge of Defense Tuple. We classify the attacker according

to their knowledge of the Defense tuple (f ,w), as:

• White box (f ,w), the attacker knows the exact system model

and its variables (such as the currently estimated system

state), and the exact thresholds of the classification system.

Thus, the white box attacker is characterized by the knowl-

edge of (f ,w). With that information, the attacker could ei-

ther run a basic exhaustive search, basic optimization strate-

gies, or more sophisticated approaches (especially solutions

that use the gradient signal from the attacked model).

• Black box (��AA
ˆf ,�Ẑw), the attacker is aware of the general de-

tection scheme, but unaware of internal variables, architec-

ture and exact thresholds used in the classification. We note

that our black box attacker is different from the one defined

in [6], (ˆf , ŵ). Our attacker does not require the knowledge

of f or its approximation
ˆf . In our case, the nature of the

environment imposes that the attacker cannot query the

system even in a black box manner to get feedback on the

provided labels or confidence scores (this is done for example

in [12, 14, 56, 61]), as this would mean potentially raising

the alarm. Thus, we consider that the only assumption of

the attacker concerning f is that Deep Learning techniques

are used for detection.

Given this taxonomy, the attacker can be classified for example,

as unconstrained white box.

3.3 Example Constraint Scenarios
We argue our Constrained and Unconstrained attacks represent

a realistic threat model in the ICS setting and fit the taxonomy

of attacks in the AML literature. In particular, practical ICS are

typically composed of multiple stages, and each stage is controlled

by a different PLC (i.e., different brands/models). Moreover, the ICS

can be deployed in a physically distributed manner. For example,

=full,

ACSAC 2020, December 7–11, 2020, Austin, USA A. Erba et al.

Table 1: Classification of our attacker models based on
training data and features, Data tuple (D,X) and algorithm
knowledge and parameters. Access: =full,G#=partial. For all
white box attacks, the Defense tuple is (f ,w), for all black
box attacks, (��AAˆf ,�Ẑw).

Attacker’s X

Constraints D Read Write

Unconstrained § 5.4
X Partially § 5.5 G#
X Fully § 5.5 G# G#

D § 5.5 G#

the adversarial attack has to find a perturbation
®δ to minimize the

reconstruction error between the input ®x + δ and output
ˆ®x of the

Reconstruction-based detector. Please refer to Section 4.1 for fur-

ther details on the target model. In a mathematical notation, it can

be written as the following constrained optimization problem in

Equation 1:

minimize MSE =
1

n

n∑
i=1

(x̂i − (xi + δi))
2

s.t.
®δ ∈ constraint space (Section 3.2.2)

real-time constraints imposed by CPS

y(®x + ®δ) = ‘safe’

(1)

We note that the attacks we demonstrate are not necessarily op-

timal, as the constraints are satisfied with non unique solutions.The

attacks are conducted in real-time (i.e., in milliseconds per time

step), not a posteriori (i.e., applied retrospectively to a longer se-

quence of sensor readings after the attacker fully receives them).

3.2.2 Attacker Knowledge. Using the adversarial learning notation

introduced in Section 2, a concealment attack is characterized by

the knowledge of the attacker about the training datasetD, feature

set X, learning algorithm f , and trained parametersw . In the ICS

setting, the attacker can be characterized differently according

to his knowledge of the attacked system. In order to explain our

attacker model, we split the tuple (D,X, f ,w) into two: the Data

tuple (D,X) and Defense tuple (f ,w). We assume the attacker

to be unconstrained or constrained w.r.t. the Data tuple, i.e., the

sensor readings X that she can observe and manipulate and the

data D that she eavesdrops. Moreover, we classify attackers as

white box, black box, w.r.t. the Defense tuple, i.e., the knowledge of
learning algorithm f , and trained parametersw . Table 1, provides

an overview of the attacker’s constraints considered in this work.

Constraints over Data Tuple.According to the Data tuple (D,X),
we classify the attacker as:

• Unconstrained (D,X), in which the attacker can manipulate

all n features in ®x , and her perturbations are limited in terms

of L0 distance to be at most n.
• Features Partially Constrained (D, ˆX), we assume that the

attacker is constrained to perturb a subset of k out of n
variables in ®x , and her perturbations are limited in terms of

L0 distance to not exceed distance k .

• Features Fully-Constrained (D, ˆX), we assume that the at-

tacker is constrained to observe and perturb a subset of k
out of n variables in ®x , and her perturbations are limited in

terms of L0 distance to not exceed distance k .
• Data Constrained (ˆD,X), we assume that the attacker is

constrained to eavesdrop a limited quantity of process data

that are used for training its attacks.

Selection of Constrained Features The subset of features that can
bemodified is highly use-case dependent (i.e., which link is attacked,

which device was compromised). To demonstrate the generality

of our findings, we explored two types of constraints: a best-case

scenario and a topology-based scenario.

For the best-case scenario, we assume that the selection of the

k out of n manipulated features can be made by the attacker to

maximize the attack impact. This arguably represents a best-case

scenario for the constrained attacker (i.e., an attacker constrained to

features that happen to be relatively ideal for the attacker). For the

second scenario, constraints are derived from the network topology.

We assume that the attacker can compromise a single substation

(or PLC) in the network, and the selection of k out of n features

is based on which sensors are interconnected to the compromised

substation.

Knowledge of Defense Tuple. We classify the attacker according

to their knowledge of the Defense tuple (f ,w), as:

• White box (f ,w), the attacker knows the exact system model

and its variables (such as the currently estimated system

state), and the exact thresholds of the classification system.

Thus, the white box attacker is characterized by the knowl-

edge of (f ,w). With that information, the attacker could ei-

ther run a basic exhaustive search, basic optimization strate-

gies, or more sophisticated approaches (especially solutions

that use the gradient signal from the attacked model).

• Black box (��AA
ˆf ,�Ẑw), the attacker is aware of the general de-

tection scheme, but unaware of internal variables, architec-

ture and exact thresholds used in the classification. We note

that our black box attacker is different from the one defined

in [6], (ˆf , ŵ). Our attacker does not require the knowledge

of f or its approximation
ˆf . In our case, the nature of the

environment imposes that the attacker cannot query the

system even in a black box manner to get feedback on the

provided labels or confidence scores (this is done for example

in [12, 14, 56, 61]), as this would mean potentially raising

the alarm. Thus, we consider that the only assumption of

the attacker concerning f is that Deep Learning techniques

are used for detection.

Given this taxonomy, the attacker can be classified for example,

as unconstrained white box.

3.3 Example Constraint Scenarios
We argue our Constrained and Unconstrained attacks represent

a realistic threat model in the ICS setting and fit the taxonomy

of attacks in the AML literature. In particular, practical ICS are

typically composed of multiple stages, and each stage is controlled

by a different PLC (i.e., different brands/models). Moreover, the ICS

can be deployed in a physically distributed manner. For example,

=partial. For
all white box attacks, the Defense tuple is (f ,w), for all black
box attacks, ��AA

ˆf �Ẑw

Attacker’s X

Constraints D Read Write

Unconstrained § 5.4
X Partially § 5.5 G#
X Fully § 5.5 G# G#

D § 5.5 G#

the adversarial attack has to find a perturbation
®δ to minimize the

reconstruction error between the input ®x + δ and output
ˆ®x of the

Reconstruction-based detector. Please refer to Section 4.1 for fur-

ther details on the target model. In a mathematical notation, it can

be written as the following constrained optimization problem in

Equation 1:

minimize MSE =
1

n

n∑
i=1

(x̂i − (xi + δi))
2

s.t.
®δ ∈ constraint space (Section 3.2.2)

real-time constraints imposed by CPS

y(®x + ®δ) = ‘safe’

(1)

We note that the attacks we demonstrate are not necessarily op-

timal, as the constraints are satisfied with non unique solutions.The

attacks are conducted in real-time (i.e., in milliseconds per time

step), not a posteriori (i.e., applied retrospectively to a longer se-

quence of sensor readings after the attacker fully receives them).

3.2.2 Attacker Knowledge. Using the adversarial learning notation

introduced in Section 2, a concealment attack is characterized by

the knowledge of the attacker about the training datasetD, feature

set X, learning algorithm f , and trained parametersw . In the ICS

setting, the attacker can be characterized differently according

to his knowledge of the attacked system. In order to explain our

attacker model, we split the tuple (D,X, f ,w) into two: the Data

tuple (D,X) and Defense tuple (f ,w). We assume the attacker

to be unconstrained or constrained w.r.t. the Data tuple, i.e., the

sensor readings X that she can observe and manipulate and the

data D that she eavesdrops. Moreover, we classify attackers as

white box, black box, w.r.t. the Defense tuple, i.e., the knowledge of
learning algorithm f , and trained parametersw . Table 1, provides

an overview of the attacker’s constraints considered in this work.

Constraints over Data Tuple.According to the Data tuple (D,X),
we classify the attacker as:

• Unconstrained (D,X), in which the attacker can manipulate

all n features in ®x , and her perturbations are limited in terms

of L0 distance to be at most n.
• Features Partially Constrained (D, ˆX), we assume that the

attacker is constrained to perturb a subset of k out of n
variables in ®x , and her perturbations are limited in terms of

L0 distance to not exceed distance k .

• Features Fully-Constrained (D, ˆX), we assume that the at-

tacker is constrained to observe and perturb a subset of k
out of n variables in ®x , and her perturbations are limited in

terms of L0 distance to not exceed distance k .
• Data Constrained (ˆD,X), we assume that the attacker is

constrained to eavesdrop a limited quantity of process data

that are used for training its attacks.

Selection of Constrained Features The subset of features that can
bemodified is highly use-case dependent (i.e., which link is attacked,

which device was compromised). To demonstrate the generality

of our findings, we explored two types of constraints: a best-case

scenario and a topology-based scenario.

For the best-case scenario, we assume that the selection of the

k out of n manipulated features can be made by the attacker to

maximize the attack impact. This arguably represents a best-case

scenario for the constrained attacker (i.e., an attacker constrained to

features that happen to be relatively ideal for the attacker). For the

second scenario, constraints are derived from the network topology.

We assume that the attacker can compromise a single substation

(or PLC) in the network, and the selection of k out of n features

is based on which sensors are interconnected to the compromised

substation.

Knowledge of Defense Tuple. We classify the attacker according

to their knowledge of the Defense tuple (f ,w), as:

• White box (f ,w), the attacker knows the exact system model

and its variables (such as the currently estimated system

state), and the exact thresholds of the classification system.

Thus, the white box attacker is characterized by the knowl-

edge of (f ,w). With that information, the attacker could ei-

ther run a basic exhaustive search, basic optimization strate-

gies, or more sophisticated approaches (especially solutions

that use the gradient signal from the attacked model).

• Black box (��AA
ˆf ,�Ẑw), the attacker is aware of the general de-

tection scheme, but unaware of internal variables, architec-

ture and exact thresholds used in the classification. We note

that our black box attacker is different from the one defined

in [6], (ˆf , ŵ). Our attacker does not require the knowledge

of f or its approximation
ˆf . In our case, the nature of the

environment imposes that the attacker cannot query the

system even in a black box manner to get feedback on the

provided labels or confidence scores (this is done for example

in [12, 14, 56, 61]), as this would mean potentially raising

the alarm. Thus, we consider that the only assumption of

the attacker concerning f is that Deep Learning techniques

are used for detection.

Given this taxonomy, the attacker can be classified for example,

as unconstrained white box.

3.3 Example Constraint Scenarios
We argue our Constrained and Unconstrained attacks represent

a realistic threat model in the ICS setting and fit the taxonomy

of attacks in the AML literature. In particular, practical ICS are

typically composed of multiple stages, and each stage is controlled

by a different PLC (i.e., different brands/models). Moreover, the ICS

can be deployed in a physically distributed manner. For example,

).

Attacker’s X

Constraints D Read Write

Unconstrained § 5.4
X Partially § 5.5 G#
X Fully § 5.5 G# G#

D § 5.5 G#

minimize MSE =
1

n

n∑
i=1

(x̂i − (xi + δi))
2

s.t.
®δ ∈ constraint space (Section 3.2.2)

real-time constraints imposed by CPS

y(®x + ®δ) = ‘safe’

(1)

We note that the attacks we demonstrate are not necessarily op-

timal, as the constraints are satisfied with non unique solutions.The

attacks are conducted in real-time (i.e., in milliseconds per time

step), not a posteriori (i.e., applied retrospectively to a longer se-

quence of sensor readings after the attacker fully receives them).

3.2.2 Attacker Knowledge. Using the adversarial learning notation

introduced in Section 2, a concealment attack is characterized by

the knowledge of the attacker about the training datasetD, feature

set X, learning algorithm f , and trained parametersw . In the ICS

setting, the attacker can be characterized differently according

to his knowledge of the attacked system. In order to explain our

attacker model, we split the tuple (D,X, f ,w) into two: the Data

tuple (D,X) and Defense tuple (f ,w). We assume the attacker

to be unconstrained or constrained w.r.t. the Data tuple, i.e., the

sensor readings X that she can observe and manipulate and the

data D that she eavesdrops. Moreover, we classify attackers as

white box, black box, w.r.t. the Defense tuple, i.e., the knowledge of
learning algorithm f , and trained parametersw . Table 1, provides

an overview of the attacker’s constraints considered in this work.

Constraints over Data Tuple.According to the Data tuple (D,X),
we classify the attacker as:

• Unconstrained (D,X), in which the attacker can manipulate

all n features in ®x , and her perturbations are limited in terms

of L0 distance to be at most n.
• Features Partially Constrained (D, ˆX), we assume that the

attacker is constrained to perturb a subset of k out of n
variables in ®x , and her perturbations are limited in terms of

L0 distance to not exceed distance k .
• Features Fully-Constrained (D, ˆX), we assume that the at-

tacker is constrained to observe and perturb a subset of k
out of n variables in ®x , and her perturbations are limited in

terms of L0 distance to not exceed distance k .

• Data Constrained (ˆD,X), we assume that the attacker is

constrained to eavesdrop a limited quantity of process data

that are used for training its attacks.

Selection of Constrained Features The subset of features that can
bemodified is highly use-case dependent (i.e., which link is attacked,

which device was compromised). To demonstrate the generality

of our findings, we explored two types of constraints: a best-case

scenario and a topology-based scenario.

For the best-case scenario, we assume that the selection of the

k out of n manipulated features can be made by the attacker to

maximize the attack impact. This arguably represents a best-case

scenario for the constrained attacker (i.e., an attacker constrained to

features that happen to be relatively ideal for the attacker). For the

second scenario, constraints are derived from the network topology.

We assume that the attacker can compromise a single substation

(or PLC) in the network, and the selection of k out of n features

is based on which sensors are interconnected to the compromised

substation.

Knowledge of Defense Tuple. We classify the attacker according

to their knowledge of the Defense tuple (f ,w), as:

• White box (f ,w), the attacker knows the exact system model

and its variables (such as the currently estimated system

state), and the exact thresholds of the classification system.

Thus, the white box attacker is characterized by the knowl-

edge of (f ,w). With that information, the attacker could ei-

ther run a basic exhaustive search, basic optimization strate-

gies, or more sophisticated approaches (especially solutions

that use the gradient signal from the attacked model).

• Black box (

ACSAC 2020, December 7–11, 2020, Austin, USA A. Erba et al.

Table 1: Classification of our attacker models based on
training data and features, Data tuple (D,X) and algorithm
knowledge and parameters. Access:

ACSAC 2020, December 7–11, 2020, Austin, USA A. Erba et al.

Table 1: Classification of our attacker models based on
training data and features, Data tuple (D,X) and algorithm
knowledge and parameters. Access: =full,G#=partial. For all
white box attacks, the Defense tuple is (f ,w), for all black
box attacks, (��AAˆf ,�Ẑw).

Attacker’s X

Constraints D Read Write

Unconstrained § 5.4
X Partially § 5.5 G#
X Fully § 5.5 G# G#

D § 5.5 G#

the adversarial attack has to find a perturbation
®δ to minimize the

reconstruction error between the input ®x + δ and output
ˆ®x of the

Reconstruction-based detector. Please refer to Section 4.1 for fur-

ther details on the target model. In a mathematical notation, it can

be written as the following constrained optimization problem in

Equation 1:

minimize MSE =
1

n

n∑
i=1

(x̂i − (xi + δi))
2

s.t.
®δ ∈ constraint space (Section 3.2.2)

real-time constraints imposed by CPS

y(®x + ®δ) = ‘safe’

(1)

We note that the attacks we demonstrate are not necessarily op-

timal, as the constraints are satisfied with non unique solutions.The

attacks are conducted in real-time (i.e., in milliseconds per time

step), not a posteriori (i.e., applied retrospectively to a longer se-

quence of sensor readings after the attacker fully receives them).

3.2.2 Attacker Knowledge. Using the adversarial learning notation

introduced in Section 2, a concealment attack is characterized by

the knowledge of the attacker about the training datasetD, feature

set X, learning algorithm f , and trained parametersw . In the ICS

setting, the attacker can be characterized differently according

to his knowledge of the attacked system. In order to explain our

attacker model, we split the tuple (D,X, f ,w) into two: the Data

tuple (D,X) and Defense tuple (f ,w). We assume the attacker

to be unconstrained or constrained w.r.t. the Data tuple, i.e., the

sensor readings X that she can observe and manipulate and the

data D that she eavesdrops. Moreover, we classify attackers as

white box, black box, w.r.t. the Defense tuple, i.e., the knowledge of
learning algorithm f , and trained parametersw . Table 1, provides

an overview of the attacker’s constraints considered in this work.

Constraints over Data Tuple.According to the Data tuple (D,X),
we classify the attacker as:

• Unconstrained (D,X), in which the attacker can manipulate

all n features in ®x , and her perturbations are limited in terms

of L0 distance to be at most n.
• Features Partially Constrained (D, ˆX), we assume that the

attacker is constrained to perturb a subset of k out of n
variables in ®x , and her perturbations are limited in terms of

L0 distance to not exceed distance k .

• Features Fully-Constrained (D, ˆX), we assume that the at-

tacker is constrained to observe and perturb a subset of k
out of n variables in ®x , and her perturbations are limited in

terms of L0 distance to not exceed distance k .
• Data Constrained (ˆD,X), we assume that the attacker is

constrained to eavesdrop a limited quantity of process data

that are used for training its attacks.

Selection of Constrained Features The subset of features that can
bemodified is highly use-case dependent (i.e., which link is attacked,

which device was compromised). To demonstrate the generality

of our findings, we explored two types of constraints: a best-case

scenario and a topology-based scenario.

For the best-case scenario, we assume that the selection of the

k out of n manipulated features can be made by the attacker to

maximize the attack impact. This arguably represents a best-case

scenario for the constrained attacker (i.e., an attacker constrained to

features that happen to be relatively ideal for the attacker). For the

second scenario, constraints are derived from the network topology.

We assume that the attacker can compromise a single substation

(or PLC) in the network, and the selection of k out of n features

is based on which sensors are interconnected to the compromised

substation.

Knowledge of Defense Tuple. We classify the attacker according

to their knowledge of the Defense tuple (f ,w), as:

• White box (f ,w), the attacker knows the exact system model

and its variables (such as the currently estimated system

state), and the exact thresholds of the classification system.

Thus, the white box attacker is characterized by the knowl-

edge of (f ,w). With that information, the attacker could ei-

ther run a basic exhaustive search, basic optimization strate-

gies, or more sophisticated approaches (especially solutions

that use the gradient signal from the attacked model).

• Black box (��AA
ˆf ,�Ẑw), the attacker is aware of the general de-

tection scheme, but unaware of internal variables, architec-

ture and exact thresholds used in the classification. We note

that our black box attacker is different from the one defined

in [6], (ˆf , ŵ). Our attacker does not require the knowledge

of f or its approximation
ˆf . In our case, the nature of the

environment imposes that the attacker cannot query the

system even in a black box manner to get feedback on the

provided labels or confidence scores (this is done for example

in [12, 14, 56, 61]), as this would mean potentially raising

the alarm. Thus, we consider that the only assumption of

the attacker concerning f is that Deep Learning techniques

are used for detection.

Given this taxonomy, the attacker can be classified for example,

as unconstrained white box.

3.3 Example Constraint Scenarios
We argue our Constrained and Unconstrained attacks represent

a realistic threat model in the ICS setting and fit the taxonomy

of attacks in the AML literature. In particular, practical ICS are

typically composed of multiple stages, and each stage is controlled

by a different PLC (i.e., different brands/models). Moreover, the ICS

can be deployed in a physically distributed manner. For example,

=full,

ACSAC 2020, December 7–11, 2020, Austin, USA A. Erba et al.

Table 1: Classification of our attacker models based on
training data and features, Data tuple (D,X) and algorithm
knowledge and parameters. Access: =full,G#=partial. For all
white box attacks, the Defense tuple is (f ,w), for all black
box attacks, (��AAˆf ,�Ẑw).

Attacker’s X

Constraints D Read Write

Unconstrained § 5.4
X Partially § 5.5 G#
X Fully § 5.5 G# G#

D § 5.5 G#

the adversarial attack has to find a perturbation
®δ to minimize the

reconstruction error between the input ®x + δ and output
ˆ®x of the

Reconstruction-based detector. Please refer to Section 4.1 for fur-

ther details on the target model. In a mathematical notation, it can

be written as the following constrained optimization problem in

Equation 1:

minimize MSE =
1

n

n∑
i=1

(x̂i − (xi + δi))
2

s.t.
®δ ∈ constraint space (Section 3.2.2)

real-time constraints imposed by CPS

y(®x + ®δ) = ‘safe’

(1)

We note that the attacks we demonstrate are not necessarily op-

timal, as the constraints are satisfied with non unique solutions.The

attacks are conducted in real-time (i.e., in milliseconds per time

step), not a posteriori (i.e., applied retrospectively to a longer se-

quence of sensor readings after the attacker fully receives them).

3.2.2 Attacker Knowledge. Using the adversarial learning notation

introduced in Section 2, a concealment attack is characterized by

the knowledge of the attacker about the training datasetD, feature

set X, learning algorithm f , and trained parametersw . In the ICS

setting, the attacker can be characterized differently according

to his knowledge of the attacked system. In order to explain our

attacker model, we split the tuple (D,X, f ,w) into two: the Data

tuple (D,X) and Defense tuple (f ,w). We assume the attacker

to be unconstrained or constrained w.r.t. the Data tuple, i.e., the

sensor readings X that she can observe and manipulate and the

data D that she eavesdrops. Moreover, we classify attackers as

white box, black box, w.r.t. the Defense tuple, i.e., the knowledge of
learning algorithm f , and trained parametersw . Table 1, provides

an overview of the attacker’s constraints considered in this work.

Constraints over Data Tuple.According to the Data tuple (D,X),
we classify the attacker as:

• Unconstrained (D,X), in which the attacker can manipulate

all n features in ®x , and her perturbations are limited in terms

of L0 distance to be at most n.
• Features Partially Constrained (D, ˆX), we assume that the

attacker is constrained to perturb a subset of k out of n
variables in ®x , and her perturbations are limited in terms of

L0 distance to not exceed distance k .

• Features Fully-Constrained (D, ˆX), we assume that the at-

tacker is constrained to observe and perturb a subset of k
out of n variables in ®x , and her perturbations are limited in

terms of L0 distance to not exceed distance k .
• Data Constrained (ˆD,X), we assume that the attacker is

constrained to eavesdrop a limited quantity of process data

that are used for training its attacks.

Selection of Constrained Features The subset of features that can
bemodified is highly use-case dependent (i.e., which link is attacked,

which device was compromised). To demonstrate the generality

of our findings, we explored two types of constraints: a best-case

scenario and a topology-based scenario.

For the best-case scenario, we assume that the selection of the

k out of n manipulated features can be made by the attacker to

maximize the attack impact. This arguably represents a best-case

scenario for the constrained attacker (i.e., an attacker constrained to

features that happen to be relatively ideal for the attacker). For the

second scenario, constraints are derived from the network topology.

We assume that the attacker can compromise a single substation

(or PLC) in the network, and the selection of k out of n features

is based on which sensors are interconnected to the compromised

substation.

Knowledge of Defense Tuple. We classify the attacker according

to their knowledge of the Defense tuple (f ,w), as:

• White box (f ,w), the attacker knows the exact system model

and its variables (such as the currently estimated system

state), and the exact thresholds of the classification system.

Thus, the white box attacker is characterized by the knowl-

edge of (f ,w). With that information, the attacker could ei-

ther run a basic exhaustive search, basic optimization strate-

gies, or more sophisticated approaches (especially solutions

that use the gradient signal from the attacked model).

• Black box (��AA
ˆf ,�Ẑw), the attacker is aware of the general de-

tection scheme, but unaware of internal variables, architec-

ture and exact thresholds used in the classification. We note

that our black box attacker is different from the one defined

in [6], (ˆf , ŵ). Our attacker does not require the knowledge

of f or its approximation
ˆf . In our case, the nature of the

environment imposes that the attacker cannot query the

system even in a black box manner to get feedback on the

provided labels or confidence scores (this is done for example

in [12, 14, 56, 61]), as this would mean potentially raising

the alarm. Thus, we consider that the only assumption of

the attacker concerning f is that Deep Learning techniques

are used for detection.

Given this taxonomy, the attacker can be classified for example,

as unconstrained white box.

3.3 Example Constraint Scenarios
We argue our Constrained and Unconstrained attacks represent

a realistic threat model in the ICS setting and fit the taxonomy

of attacks in the AML literature. In particular, practical ICS are

typically composed of multiple stages, and each stage is controlled

by a different PLC (i.e., different brands/models). Moreover, the ICS

can be deployed in a physically distributed manner. For example,

=partial. For
all white box attacks, the Defense tuple is (f ,w), for all black
box attacks, ��AA

ˆf �Ẑw

Attacker’s X

Constraints D Read Write

Unconstrained § 5.4
X Partially § 5.5 G#
X Fully § 5.5 G# G#

D § 5.5 G#

the adversarial attack has to find a perturbation
®δ to minimize the

reconstruction error between the input ®x + δ and output
ˆ®x of the

Reconstruction-based detector. Please refer to Section 4.1 for fur-

ther details on the target model. In a mathematical notation, it can

be written as the following constrained optimization problem in

Equation 1:

minimize MSE =
1

n

n∑
i=1

(x̂i − (xi + δi))
2

s.t.
®δ ∈ constraint space (Section 3.2.2)

real-time constraints imposed by CPS

y(®x + ®δ) = ‘safe’

(1)

We note that the attacks we demonstrate are not necessarily op-

timal, as the constraints are satisfied with non unique solutions.The

attacks are conducted in real-time (i.e., in milliseconds per time

step), not a posteriori (i.e., applied retrospectively to a longer se-

quence of sensor readings after the attacker fully receives them).

3.2.2 Attacker Knowledge. Using the adversarial learning notation

introduced in Section 2, a concealment attack is characterized by

the knowledge of the attacker about the training datasetD, feature

set X, learning algorithm f , and trained parametersw . In the ICS

setting, the attacker can be characterized differently according

to his knowledge of the attacked system. In order to explain our

attacker model, we split the tuple (D,X, f ,w) into two: the Data

tuple (D,X) and Defense tuple (f ,w). We assume the attacker

to be unconstrained or constrained w.r.t. the Data tuple, i.e., the

sensor readings X that she can observe and manipulate and the

data D that she eavesdrops. Moreover, we classify attackers as

white box, black box, w.r.t. the Defense tuple, i.e., the knowledge of
learning algorithm f , and trained parametersw . Table 1, provides

an overview of the attacker’s constraints considered in this work.

Constraints over Data Tuple.According to the Data tuple (D,X),
we classify the attacker as:

• Unconstrained (D,X), in which the attacker can manipulate

all n features in ®x , and her perturbations are limited in terms

of L0 distance to be at most n.
• Features Partially Constrained (D, ˆX), we assume that the

attacker is constrained to perturb a subset of k out of n
variables in ®x , and her perturbations are limited in terms of

L0 distance to not exceed distance k .

• Features Fully-Constrained (D, ˆX), we assume that the at-

tacker is constrained to observe and perturb a subset of k
out of n variables in ®x , and her perturbations are limited in

terms of L0 distance to not exceed distance k .
• Data Constrained (ˆD,X), we assume that the attacker is

constrained to eavesdrop a limited quantity of process data

that are used for training its attacks.

Selection of Constrained Features The subset of features that can
bemodified is highly use-case dependent (i.e., which link is attacked,

which device was compromised). To demonstrate the generality

of our findings, we explored two types of constraints: a best-case

scenario and a topology-based scenario.

For the best-case scenario, we assume that the selection of the

k out of n manipulated features can be made by the attacker to

maximize the attack impact. This arguably represents a best-case

scenario for the constrained attacker (i.e., an attacker constrained to

features that happen to be relatively ideal for the attacker). For the

second scenario, constraints are derived from the network topology.

We assume that the attacker can compromise a single substation

(or PLC) in the network, and the selection of k out of n features

is based on which sensors are interconnected to the compromised

substation.

Knowledge of Defense Tuple. We classify the attacker according

to their knowledge of the Defense tuple (f ,w), as:

• White box (f ,w), the attacker knows the exact system model

and its variables (such as the currently estimated system

state), and the exact thresholds of the classification system.

Thus, the white box attacker is characterized by the knowl-

edge of (f ,w). With that information, the attacker could ei-

ther run a basic exhaustive search, basic optimization strate-

gies, or more sophisticated approaches (especially solutions

that use the gradient signal from the attacked model).

• Black box (��AA
ˆf ,�Ẑw), the attacker is aware of the general de-

tection scheme, but unaware of internal variables, architec-

ture and exact thresholds used in the classification. We note

that our black box attacker is different from the one defined

in [6], (ˆf , ŵ). Our attacker does not require the knowledge

of f or its approximation
ˆf . In our case, the nature of the

environment imposes that the attacker cannot query the

system even in a black box manner to get feedback on the

provided labels or confidence scores (this is done for example

in [12, 14, 56, 61]), as this would mean potentially raising

the alarm. Thus, we consider that the only assumption of

the attacker concerning f is that Deep Learning techniques

are used for detection.

Given this taxonomy, the attacker can be classified for example,

as unconstrained white box.

3.3 Example Constraint Scenarios
We argue our Constrained and Unconstrained attacks represent

a realistic threat model in the ICS setting and fit the taxonomy

of attacks in the AML literature. In particular, practical ICS are

typically composed of multiple stages, and each stage is controlled

by a different PLC (i.e., different brands/models). Moreover, the ICS

can be deployed in a physically distributed manner. For example,

,

ACSAC 2020, December 7–11, 2020, Austin, USA A. Erba et al.

Table 1: Classification of our attacker models based on
training data and features, Data tuple (D,X) and algorithm
knowledge and parameters. Access:

ACSAC 2020, December 7–11, 2020, Austin, USA A. Erba et al.

Table 1: Classification of our attacker models based on
training data and features, Data tuple (D,X) and algorithm
knowledge and parameters. Access: =full,G#=partial. For all
white box attacks, the Defense tuple is (f ,w), for all black
box attacks, (��AAˆf ,�Ẑw).

Attacker’s X

Constraints D Read Write

Unconstrained § 5.4
X Partially § 5.5 G#
X Fully § 5.5 G# G#

D § 5.5 G#

the adversarial attack has to find a perturbation
®δ to minimize the

reconstruction error between the input ®x + δ and output
ˆ®x of the

Reconstruction-based detector. Please refer to Section 4.1 for fur-

ther details on the target model. In a mathematical notation, it can

be written as the following constrained optimization problem in

Equation 1:

minimize MSE =
1

n

n∑
i=1

(x̂i − (xi + δi))
2

s.t.
®δ ∈ constraint space (Section 3.2.2)

real-time constraints imposed by CPS

y(®x + ®δ) = ‘safe’

(1)

We note that the attacks we demonstrate are not necessarily op-

timal, as the constraints are satisfied with non unique solutions.The

attacks are conducted in real-time (i.e., in milliseconds per time

step), not a posteriori (i.e., applied retrospectively to a longer se-

quence of sensor readings after the attacker fully receives them).

3.2.2 Attacker Knowledge. Using the adversarial learning notation

introduced in Section 2, a concealment attack is characterized by

the knowledge of the attacker about the training datasetD, feature

set X, learning algorithm f , and trained parametersw . In the ICS

setting, the attacker can be characterized differently according

to his knowledge of the attacked system. In order to explain our

attacker model, we split the tuple (D,X, f ,w) into two: the Data

tuple (D,X) and Defense tuple (f ,w). We assume the attacker

to be unconstrained or constrained w.r.t. the Data tuple, i.e., the

sensor readings X that she can observe and manipulate and the

data D that she eavesdrops. Moreover, we classify attackers as

white box, black box, w.r.t. the Defense tuple, i.e., the knowledge of
learning algorithm f , and trained parametersw . Table 1, provides

an overview of the attacker’s constraints considered in this work.

Constraints over Data Tuple.According to the Data tuple (D,X),
we classify the attacker as:

• Unconstrained (D,X), in which the attacker can manipulate

all n features in ®x , and her perturbations are limited in terms

of L0 distance to be at most n.
• Features Partially Constrained (D, ˆX), we assume that the

attacker is constrained to perturb a subset of k out of n
variables in ®x , and her perturbations are limited in terms of

L0 distance to not exceed distance k .

• Features Fully-Constrained (D, ˆX), we assume that the at-

tacker is constrained to observe and perturb a subset of k
out of n variables in ®x , and her perturbations are limited in

terms of L0 distance to not exceed distance k .
• Data Constrained (ˆD,X), we assume that the attacker is

constrained to eavesdrop a limited quantity of process data

that are used for training its attacks.

Selection of Constrained Features The subset of features that can
bemodified is highly use-case dependent (i.e., which link is attacked,

which device was compromised). To demonstrate the generality

of our findings, we explored two types of constraints: a best-case

scenario and a topology-based scenario.

For the best-case scenario, we assume that the selection of the

k out of n manipulated features can be made by the attacker to

maximize the attack impact. This arguably represents a best-case

scenario for the constrained attacker (i.e., an attacker constrained to

features that happen to be relatively ideal for the attacker). For the

second scenario, constraints are derived from the network topology.

We assume that the attacker can compromise a single substation

(or PLC) in the network, and the selection of k out of n features

is based on which sensors are interconnected to the compromised

substation.

Knowledge of Defense Tuple. We classify the attacker according

to their knowledge of the Defense tuple (f ,w), as:

• White box (f ,w), the attacker knows the exact system model

and its variables (such as the currently estimated system

state), and the exact thresholds of the classification system.

Thus, the white box attacker is characterized by the knowl-

edge of (f ,w). With that information, the attacker could ei-

ther run a basic exhaustive search, basic optimization strate-

gies, or more sophisticated approaches (especially solutions

that use the gradient signal from the attacked model).

• Black box (��AA
ˆf ,�Ẑw), the attacker is aware of the general de-

tection scheme, but unaware of internal variables, architec-

ture and exact thresholds used in the classification. We note

that our black box attacker is different from the one defined

in [6], (ˆf , ŵ). Our attacker does not require the knowledge

of f or its approximation
ˆf . In our case, the nature of the

environment imposes that the attacker cannot query the

system even in a black box manner to get feedback on the

provided labels or confidence scores (this is done for example

in [12, 14, 56, 61]), as this would mean potentially raising

the alarm. Thus, we consider that the only assumption of

the attacker concerning f is that Deep Learning techniques

are used for detection.

Given this taxonomy, the attacker can be classified for example,

as unconstrained white box.

3.3 Example Constraint Scenarios
We argue our Constrained and Unconstrained attacks represent

a realistic threat model in the ICS setting and fit the taxonomy

of attacks in the AML literature. In particular, practical ICS are

typically composed of multiple stages, and each stage is controlled

by a different PLC (i.e., different brands/models). Moreover, the ICS

can be deployed in a physically distributed manner. For example,

=full,

ACSAC 2020, December 7–11, 2020, Austin, USA A. Erba et al.

Table 1: Classification of our attacker models based on
training data and features, Data tuple (D,X) and algorithm
knowledge and parameters. Access: =full,G#=partial. For all
white box attacks, the Defense tuple is (f ,w), for all black
box attacks, (��AAˆf ,�Ẑw).

Attacker’s X

Constraints D Read Write

Unconstrained § 5.4
X Partially § 5.5 G#
X Fully § 5.5 G# G#

D § 5.5 G#

the adversarial attack has to find a perturbation
®δ to minimize the

reconstruction error between the input ®x + δ and output
ˆ®x of the

Reconstruction-based detector. Please refer to Section 4.1 for fur-

ther details on the target model. In a mathematical notation, it can

be written as the following constrained optimization problem in

Equation 1:

minimize MSE =
1

n

n∑
i=1

(x̂i − (xi + δi))
2

s.t.
®δ ∈ constraint space (Section 3.2.2)

real-time constraints imposed by CPS

y(®x + ®δ) = ‘safe’

(1)

We note that the attacks we demonstrate are not necessarily op-

timal, as the constraints are satisfied with non unique solutions.The

attacks are conducted in real-time (i.e., in milliseconds per time

step), not a posteriori (i.e., applied retrospectively to a longer se-

quence of sensor readings after the attacker fully receives them).

3.2.2 Attacker Knowledge. Using the adversarial learning notation

introduced in Section 2, a concealment attack is characterized by

the knowledge of the attacker about the training datasetD, feature

set X, learning algorithm f , and trained parametersw . In the ICS

setting, the attacker can be characterized differently according

to his knowledge of the attacked system. In order to explain our

attacker model, we split the tuple (D,X, f ,w) into two: the Data

tuple (D,X) and Defense tuple (f ,w). We assume the attacker

to be unconstrained or constrained w.r.t. the Data tuple, i.e., the

sensor readings X that she can observe and manipulate and the

data D that she eavesdrops. Moreover, we classify attackers as

white box, black box, w.r.t. the Defense tuple, i.e., the knowledge of
learning algorithm f , and trained parametersw . Table 1, provides

an overview of the attacker’s constraints considered in this work.

Constraints over Data Tuple.According to the Data tuple (D,X),
we classify the attacker as:

• Unconstrained (D,X), in which the attacker can manipulate

all n features in ®x , and her perturbations are limited in terms

of L0 distance to be at most n.
• Features Partially Constrained (D, ˆX), we assume that the

attacker is constrained to perturb a subset of k out of n
variables in ®x , and her perturbations are limited in terms of

L0 distance to not exceed distance k .

• Features Fully-Constrained (D, ˆX), we assume that the at-

tacker is constrained to observe and perturb a subset of k
out of n variables in ®x , and her perturbations are limited in

terms of L0 distance to not exceed distance k .
• Data Constrained (ˆD,X), we assume that the attacker is

constrained to eavesdrop a limited quantity of process data

that are used for training its attacks.

Selection of Constrained Features The subset of features that can
bemodified is highly use-case dependent (i.e., which link is attacked,

which device was compromised). To demonstrate the generality

of our findings, we explored two types of constraints: a best-case

scenario and a topology-based scenario.

For the best-case scenario, we assume that the selection of the

k out of n manipulated features can be made by the attacker to

maximize the attack impact. This arguably represents a best-case

scenario for the constrained attacker (i.e., an attacker constrained to

features that happen to be relatively ideal for the attacker). For the

second scenario, constraints are derived from the network topology.

We assume that the attacker can compromise a single substation

(or PLC) in the network, and the selection of k out of n features

is based on which sensors are interconnected to the compromised

substation.

Knowledge of Defense Tuple. We classify the attacker according

to their knowledge of the Defense tuple (f ,w), as:

• White box (f ,w), the attacker knows the exact system model

and its variables (such as the currently estimated system

state), and the exact thresholds of the classification system.

Thus, the white box attacker is characterized by the knowl-

edge of (f ,w). With that information, the attacker could ei-

ther run a basic exhaustive search, basic optimization strate-

gies, or more sophisticated approaches (especially solutions

that use the gradient signal from the attacked model).

• Black box (��AA
ˆf ,�Ẑw), the attacker is aware of the general de-

tection scheme, but unaware of internal variables, architec-

ture and exact thresholds used in the classification. We note

that our black box attacker is different from the one defined

in [6], (ˆf , ŵ). Our attacker does not require the knowledge

of f or its approximation
ˆf . In our case, the nature of the

environment imposes that the attacker cannot query the

system even in a black box manner to get feedback on the

provided labels or confidence scores (this is done for example

in [12, 14, 56, 61]), as this would mean potentially raising

the alarm. Thus, we consider that the only assumption of

the attacker concerning f is that Deep Learning techniques

are used for detection.

Given this taxonomy, the attacker can be classified for example,

as unconstrained white box.

3.3 Example Constraint Scenarios
We argue our Constrained and Unconstrained attacks represent

a realistic threat model in the ICS setting and fit the taxonomy

of attacks in the AML literature. In particular, practical ICS are

typically composed of multiple stages, and each stage is controlled

by a different PLC (i.e., different brands/models). Moreover, the ICS

can be deployed in a physically distributed manner. For example,

=partial. For
all white box attacks, the Defense tuple is (f ,w), for all black
box attacks, ��AA

ˆf �Ẑw

Attacker’s X

Constraints D Read Write

Unconstrained § 5.4
X Partially § 5.5 G#
X Fully § 5.5 G# G#

D § 5.5 G#

the adversarial attack has to find a perturbation
®δ to minimize the

reconstruction error between the input ®x + δ and output
ˆ®x of the

Reconstruction-based detector. Please refer to Section 4.1 for fur-

ther details on the target model. In a mathematical notation, it can

be written as the following constrained optimization problem in

Equation 1:

minimize MSE =
1

n

n∑
i=1

(x̂i − (xi + δi))
2

s.t.
®δ ∈ constraint space (Section 3.2.2)

real-time constraints imposed by CPS

y(®x + ®δ) = ‘safe’

(1)

We note that the attacks we demonstrate are not necessarily op-

timal, as the constraints are satisfied with non unique solutions.The

attacks are conducted in real-time (i.e., in milliseconds per time

step), not a posteriori (i.e., applied retrospectively to a longer se-

quence of sensor readings after the attacker fully receives them).

3.2.2 Attacker Knowledge. Using the adversarial learning notation

introduced in Section 2, a concealment attack is characterized by

the knowledge of the attacker about the training datasetD, feature

set X, learning algorithm f , and trained parametersw . In the ICS

setting, the attacker can be characterized differently according

to his knowledge of the attacked system. In order to explain our

attacker model, we split the tuple (D,X, f ,w) into two: the Data

tuple (D,X) and Defense tuple (f ,w). We assume the attacker

to be unconstrained or constrained w.r.t. the Data tuple, i.e., the

sensor readings X that she can observe and manipulate and the

data D that she eavesdrops. Moreover, we classify attackers as

white box, black box, w.r.t. the Defense tuple, i.e., the knowledge of
learning algorithm f , and trained parametersw . Table 1, provides

an overview of the attacker’s constraints considered in this work.

Constraints over Data Tuple.According to the Data tuple (D,X),
we classify the attacker as:

• Unconstrained (D,X), in which the attacker can manipulate

all n features in ®x , and her perturbations are limited in terms

of L0 distance to be at most n.
• Features Partially Constrained (D, ˆX), we assume that the

attacker is constrained to perturb a subset of k out of n
variables in ®x , and her perturbations are limited in terms of

L0 distance to not exceed distance k .

• Features Fully-Constrained (D, ˆX), we assume that the at-

tacker is constrained to observe and perturb a subset of k
out of n variables in ®x , and her perturbations are limited in

terms of L0 distance to not exceed distance k .
• Data Constrained (ˆD,X), we assume that the attacker is

constrained to eavesdrop a limited quantity of process data

that are used for training its attacks.

Selection of Constrained Features The subset of features that can
bemodified is highly use-case dependent (i.e., which link is attacked,

which device was compromised). To demonstrate the generality

of our findings, we explored two types of constraints: a best-case

scenario and a topology-based scenario.

For the best-case scenario, we assume that the selection of the

k out of n manipulated features can be made by the attacker to

maximize the attack impact. This arguably represents a best-case

scenario for the constrained attacker (i.e., an attacker constrained to

features that happen to be relatively ideal for the attacker). For the

second scenario, constraints are derived from the network topology.

We assume that the attacker can compromise a single substation

(or PLC) in the network, and the selection of k out of n features

is based on which sensors are interconnected to the compromised

substation.

Knowledge of Defense Tuple. We classify the attacker according

to their knowledge of the Defense tuple (f ,w), as:

• White box (f ,w), the attacker knows the exact system model

and its variables (such as the currently estimated system

state), and the exact thresholds of the classification system.

Thus, the white box attacker is characterized by the knowl-

edge of (f ,w). With that information, the attacker could ei-

ther run a basic exhaustive search, basic optimization strate-

gies, or more sophisticated approaches (especially solutions

that use the gradient signal from the attacked model).

• Black box (��AA
ˆf ,�Ẑw), the attacker is aware of the general de-

tection scheme, but unaware of internal variables, architec-

ture and exact thresholds used in the classification. We note

that our black box attacker is different from the one defined

in [6], (ˆf , ŵ). Our attacker does not require the knowledge

of f or its approximation
ˆf . In our case, the nature of the

environment imposes that the attacker cannot query the

system even in a black box manner to get feedback on the

provided labels or confidence scores (this is done for example

in [12, 14, 56, 61]), as this would mean potentially raising

the alarm. Thus, we consider that the only assumption of

the attacker concerning f is that Deep Learning techniques

are used for detection.

Given this taxonomy, the attacker can be classified for example,

as unconstrained white box.

3.3 Example Constraint Scenarios
We argue our Constrained and Unconstrained attacks represent

a realistic threat model in the ICS setting and fit the taxonomy

of attacks in the AML literature. In particular, practical ICS are

typically composed of multiple stages, and each stage is controlled

by a different PLC (i.e., different brands/models). Moreover, the ICS

can be deployed in a physically distributed manner. For example,

), the attacker is aware of the general

detection scheme, but unaware of internal variables, architec-

ture and exact thresholds used in the classification. We note

that our black box attacker is different from the one defined

in [6], (ˆf , ŵ). Our attacker does not require the knowledge

of f or its approximation
ˆf . In our case, the nature of the

environment imposes that the attacker cannot query the

system even in a black box manner to get feedback on the

provided labels or confidence scores (this is done for example

in [12, 14, 56, 61]), as this would mean potentially raising

the alarm. Thus, we consider that the only assumption of

the attacker concerning f is that Deep Learning techniques

are used for detection.

Given this taxonomy, the attacker can be classified for example,

as unconstrained white box.

3.3 Example Constraint Scenarios
We argue our Constrained and Unconstrained attacks represent

a realistic threat model in the ICS setting and fit the taxonomy

of attacks in the AML literature. In particular, practical ICS are

typically composed of multiple stages, and each stage is controlled

by a different PLC (i.e., different brands/models). Moreover, the ICS

can be deployed in a physically distributed manner. For example,

in the case of water distribution networks, pumping stations are

typically located kilometers away from the water reservoir. In this

heterogeneous setting, an attacker can either gain control over a

limited set of resources as practically demonstrated in [17], or the

Constrained Concealment Attacks against Reconstruction-based detectors in ICS ACSAC 2020, December 7–11, 2020, Austin, USA

whole plant (by compromising the network or central SCADA). We

capture those different capabilities of the attacker in the following

three scenarios:

• The Unconstrained Attacker can read and write any features

arbitrarily, e.g., by compromising the SCADA system, as

modeled by Mo et al. [39].

• The Partially Constrained attacker can read all traffic received

by the SCADA system (for example by a passive wiretap [55]

or by leveraging access control misconfigurations), but she is

only able to spoof sensor readings from a specific substation,

exploiting specific vulnerabilities of the substation or its

protocol to the SCADA (e.g., lack of authentication).

• The Fully Constrained attacker relates to a scenario where an
attacker compromised a specific substation, giving him read

and write access to features from this substation only [1, 17].

Similar assumptions were also considered in the BATADAL

dataset [53], where the attacker was assumed to perform con-

strained replay attacks to reduce the confidence of anomaly de-

tectors. In our contribution, we perform a concealment attack in a

systematic way to assess their impact over the anomaly detector.

A similar intuition is also used in the FAIL attacker model [49] for

AML. In particular, FAIL proposes to characterize attacker knowl-

edge over 4 dimension: Feature, Algorithm, Instance, Leverage.
While the first three have a counterpart in systematization by Big-

gio et al. [6], Leverage stands for the subset of features that the
adversary can modify (just like our constrained attacker). Thus,

our Unconstrained and Constrained attacks represent attacks with

full and limited Leverage.

3.4 Our Framework for Attack Computation
For both the white box and black box case, the attacker is assumed

to intercept and manipulate a Constrained or Unconstrained set of

sensor readings in real-time.

In the white box setting, we propose an iterative attack, able

to interactively query a classification oracle to determine which

features to manipulate, and the value to assign to those features. We

propose to compute the manipulations using an iterative algorithm.

This algorithm calculates solutions that are ‘safe’ from the detector

perspective. The algorithm is tunable, i.e., the attacker can act on

some algorithm parameters that impact over time the computation

and, consequently, the concealment efficacy. Again, this speeds up

computation but can impact the solution quality.

In the black box setting, we propose the use of a learning based

attack, specifically a Deep Neural Network that is capable of out-

putting concealed sensor readings, without the oracle’s feedback.

The attacker is adversarially training the neural network to learn

how the detector expects the ICS to behave. This trained neural

network then receives the traffic coming from the PLC. While the

attacker creates an anomaly over the physical process, the neural

network adjusts the anomalous data to resemble ‘safe’ data. This

manipulated version of sensor data is sent to the SCADA.

In order to avoid confusion, we point out explicitly that our iter-

ative attack can operate under the attacker white box assumption

as it requires to query an oracle of the anomaly detector, while the

learning based attack can operate under the black box assumption

as no query access is required to compute the adversarial sensor

readings. We compare iterative and learning based approaches with

replay attacks, as proposed in literature [39]. The attacker that

performs a replay attack can be categorized as black box.

4 DESIGN OF CONCEALMENT ATTACKS
We now present a detailed design for the three attacks that we

consider. We start with details on the (prior work) Reconstruction-

based attack detector, then introduce the replay attack (proposed

by [39]). We provide details on the iterative attack (white box knowl-

edge). We then conclude with the learning based approach (black

box knowledge), which leverages an online concealment method

without any prior knowledge about the physical process that gen-

erates the sensor readings and the detection scheme. Given these

premises, we note that, while adversarial examples found using the

iterative approach depend on the internal structure of the attacked

anomaly detector, examples crafted through the learning based

approach are independent from the addressed detection scheme

(see Section 5.6).

4.1 Background: Reconstruction-based Attack
Detector

In this work, we target anomaly detection systems proposed in

prior works [20, 32, 51], which share the same underlying idea,

reconstruction-based anomaly detection. The anomaly detector

consists of two parts, namely a Deep Learning autoencoder model

(withm ×n features as input and n output) trained over the normal

operation sensor readings of an ICS to optimize Mean Squared Error

Loss, and a classifier function. The idea is that the deep model has

learned to reproduce the system behavior under normal operating

conditions with a low reconstruction error, so it reproduces a higher

reconstruction error when fed with anomalous sensor readings. The

comparison between the input and output of the deep model is used

to decide if the system is ‘safe’ or ‘under attack’. Reconstruction

based classifiers represent the state of the art for anomaly detection

in ICS on a multi-fold basis. First, they can overcome the problem of

shortage of ‘under attack’ samples that are hard to be gathered from

the system without damaging the plant. Second, they can capture

interdependence between sensor signals that helps localization of

anomalies. Third, they guarantee a low time of detection, which is

a fundamental property for ICS anomaly detectors.

As reference implementation, we use the general Autoencoder-

based anomaly detector framework proposed in [51] and available

as open source [46]. Moreover, we explore transferability of our

black box attack between different Deep Architectures (DA) in Sec-

tion 5. In particular we tested Long Short TermMemory (LSTM) [25]

as proposed in [20] and Convolutional Neural Networks (CNN) [33]

as proposed in [32]. The input to the DA is X = [®st−m , . . . , ®st],
representingm + 1 time-steps of ®s = [r1, r2, . . . , rn], which is an

n-dimensional vector of sensor readings. DA’s goal is to find ϕ
parameters that minimize following the Mean-Squared Error opti-

mization problem:

min

ϕ
E(X , ®st)∼D

[
∥DA(ϕ,X), ®st ∥

2

2

]
(2)

where DA outputs an n-dimensional vector ®o = [v1,v2, ...,vn],
andvi s .t . i ∈ {1, ...,n} represents the reconstructed value w.r.t. the
input reading r ti . In order to decide if the system is under attack, the

ACSAC 2020, December 7–11, 2020, Austin, USA A. Erba et al.

mean squared reconstruction error between observed and predicted

features are computed. If the mean squared reconstruction error

exceeds a threshold θ , the system is classified as under attack. The

authors of [51] chose θ as 99.5 percentile (Q99.5) of the average

reconstruction error over the training set.

We formalize this as follows. Given a target vector ®st , we define:
®e = ®st − ®o = [d1, . . . ,dn] as the reconstruction error n-dimensional

vector, ε(®e) as the corresponding average reconstruction error:

ε(®e) =
1

n

n∑
i=1

di
2, (3)

and y(X) as the classified state of the water distribution system

out of Reconstruction-based Intrusion Detection System. Given an

input X , y is ‘under attack’ if ε greater than θ :

y(X) =

{
‘under attack’ if ε(®e) > θ

‘safe’ otherwise

(4)

Moreover, the authors propose a window parameter that takes into

consideration the mean of ε(®e) of the last window time steps to

decide if the current tuple is ‘safe’. This helps diminishing the

amount of false positives, since an alarm is raised only if in the last

window time steps the mean of ε(®e) is above θ .

4.2 Baseline: Replay Attack
In the replay attack setting (prior work, used here as baseline), the

attacker does not know how detection is performed. In order to

avoid detection, the attacker can replay sensor readings that have

been recorded while no anomalies were occurring in the system.

In particular, we assume that the attacker could record selected

data occurring exactly n days before—i.e., if the concealment attack

starts at 10 a.m., the attacker starts replaying data from 10 a.m. one

day before.

4.3 Iterative Attack
In the iterative attack, the white box attacker knows how detection

is performed, all thresholds and parameters of the detector, as well

as the normal operation range for each one of the model features.

For example, the attacker knowswhich sensor readings are common

during normal operation of the physical process. As a result, the

attacker essentially has access to an oracle of the Deep Architecture,
where the attacker can provide arbitrary ®x features and gets the

individual values of the reconstruction error vector ®e . The attacker
then computes maxi ®e and finds the sensor reading ri with the

highest reconstruction error from ®x .

In order to satisfy the constraint ε(®e ′) < θ (i.e.y(®x+ ®δ) = ‘safe’ in

Equation 1), the attacker performs a coordinate descent algorithm

to decrease the reconstruction error related to ri (As we rely on

coordinate descent algorithm we do not use gradient estimation

methods). At each iteration of the algorithm, a coordinate of the fea-

ture vector is modified until a solution is found or the computational

budgets are exceeded.

Two computational budgets are put in place: patience and budget.
If no lower reconstruction error is found by descending a coordinate,

the algorithm tries descending other coordinates. If no improved

solutions are found in patience iterations, the input is no longer op-

timized. budget is the maximum number of iterations for coordinate

descent. After budget attempts without satisfying ε(®e ′) < θ , the
input is no longer optimized, and no solution is found. Additional

details are found in Appendix A.

Sensor readings ri are modified in the range of normal operating

values; this guides the computation to a solution that is consistent

with the physical process learned by the detector. For example, if

normal operations of sensor ri are in the range [0, 5], the attacker

tries to substitute the corresponding value of ri according to its

range to see if the related reconstruction error decreases. The algo-

rithm 1 can be found in Appendix A as a reference.

4.4 Learning Based attack
In the learning based setting, the black box attacker does not know

anything about the detectionmechanism except the fact that it relies

on a Reconstruction-based model: the attacker can only intercept

and manipulate the communication between the PLCs and SCADA.

However, the nature of the ICS environment allows us to assume

that a detection mechanism trained over a specific CPS should

represent its physical rules in order to spot anomalies.

In this case, a reasonable attack scheme can be divided into five

steps. The attacker first intercepts traffic from PLCs to SCADA in

order to collect information on how the ICS behaves under normal

conditions. Second, collected data are used to learn how the system

behaves normally and train a Deep Learning model, implicitly train-

ing a model to solve the minimization problem in Equation 1. Third,

the attacker manipulates the physical process; anomalous data are

generated as a consequence. Fourth, the adversarially trained model

is used to conceal anomalous readings by morphing them into con-

cealed data that will be classified as ‘safe’. Fifth, the concealed data

is forwarded to the SCADA.

Autoencoder-based Generator.We implement the learning based

attack using an autoencoder network to generate concealed data

(the word generator is used with a different meaning than the usual

one. In our case the input is not random noise that is going to be

crafted by the network). The autoencoder is trained while inter-

cepting normal traffic; the network learns to output tuples that are

classified as being normal with high confidence. Forwarding the

output of the adversarial network—regardless of how the detector

is built—forces it to misprediction, because the adversarial exam-

ples have been adjusted to resemble normal operations. Note that

the autoencoder does not completely change the tuple; intuitively,

only the part that contains the anomaly is reconstructed to match

the learned physical behavior. We explored different architectures,

activation, and loss functions for the autoencoder network. Experi-

mentally, we verified that by using hidden layers to increase the

data dimensionality (i.e., with more units than the input and output

layers), rather than decreasing it, we achieved a higher conceal-

ment capacity than canonical ‘compressing’ models. Particularly,

we implemented an autoencoder network with three hidden layers,

with input and output dimensions equal to the number of sensors

and actuators in the network. We used mean squared error as a

loss function and sigmoid as an activation function. To train the

network, we use the ADAM [31] optimizer with a learning rate set

to 0.001.

Post-processing. In order to generate feasible inputs for the anom-

aly detector, we need to consider that not all the sensor readings

Constrained Concealment Attacks against Reconstruction-based detectors in ICS ACSAC 2020, December 7–11, 2020, Austin, USA

assume continuous values—some are categorical integers that rep-

resent the status of actuators. Since the output of a neural network

is continuous, we need to post-process all the readings that are

supposed to be integers. For example, if a pump status assumes

a value 0 when it is turned off and 1 when it is turned on, post-
processing approximates the corresponding output value to the

nearest allowed integer. According to this post-processing, some

other values should be adjusted in order to match the physical rules.

This is the case, for example, for speed sensors that must read 0 if

their related pump is off.

4.5 Positioning with respect to
State-of-The-Art AML attacks

In this work, we consider attacks on a (prior work) reconstruc-

tion based classifier. This represents a substantial difference from

classifiers considered in AML attacks in other domains. In related

work [10, 37, 43], attacks on end-to-end Neural Network classi-

fiers are considered (i.e., those classifiers are trained to optimize

the cross-entropy loss). In particular, target misclassification is

achieved, diminishing the predicted probability of the true class

in the output layer. Our problem setting is different: To evade the

classifier, we need to diminish the residual between input and out-

put. Our target Neural Networks are trained to optimize the Mean

Squared Error loss. This can be achieved by reconstructing the sen-

sor signal in a way that matches the learned physical properties of

the ICS. Those differences motivated our novel white-box and black

box approaches to evade Deep Learning-based Anomaly Detectors

in ICS.

Model Robustness. Adversarial Robustness [37] is achieved by a)

adversarial training b) classifier capacity. Following the definition,

adversarial training is obtained embedding adversarial examples in

the training set. In our context, the Neural Network is trained to

approximate the system behavior during normal operating condi-

tions, with no samples for the ‘under attack’ class. Thus, adversarial

training here does not apply: indeed, we cannot train the system

to be resilient to adversarial attacks since samples from the class

‘under attack’ is unknown to the defender.

5 EVALUATION
In this section, we experimentally evaluate the proposed attacks.We

start by introducing the datasets we used for our experiments: the

BATADAL dataset and data coming from a real industrial process

(WADI dataset). We start the evaluation targeting an Autoencoder-

based detector and explore the performance of replay, iterative,

and learning based attacks in constrained and unconstrained con-

ditions. Then, we show that our learning based attack generalizes

to other schemes based on LSTM and CNN. Finally, we show the

concealment attack results obtained in a real industrial testbed.

5.1 Dataset 1: BATADAL
The first dataset was generated with epanetCPA [52], an open-

source, object-oriented Matlab toolbox for modeling the hydraulic

response of water distribution systems to cyber-physical attacks.

The dataset was originally generated for the BATADAL [53] com-

petition, which ran between 2016 and 2017. The BATADAL compe-

tition was based on three datasets: the first contains data coming

from the simulation of 365 days of normal operations, while the sec-

ond and third contains 14 attacks (7 attacks each). The details of the

attacks can be found in [53]. These datasets contain readings from

43 sensors: tank water levels (7 variables), inlet and outlet pressure

for one actuated valve and all pumping stations (12 variables), as

well as their flow and status (24 variables). All variables are con-

tinuous, except for the status of valve and pumps, represented by

binary variables.

The original attack dataset (from http://www.batadal.net/data.

html) contained sensor data readings that were manually concealed.

For that reason, we could not use the original attack dataset directly

(as we wanted to add concealment ourselves). Instead, we re-created

the attacks (and resulting sensor data) from the BATADAL dataset

for this work using the original setup, without any manual conceal-

ment. In our new version, the data are collected from sensors every

15 minutes.

5.2 Dataset 2: WADI
Our second dataset is based on the Water Distribution (WADI)

testbed, a real-world ICS testbed located at the Singapore Univer-

sity of Technology and Design [2]. It is composed of two elevated

reservoir tanks, six consumer tanks, two raw water tanks, and a

return tank. It contains chemical dosing systems, booster pumps

and valves, instrumentation, and analyzers. WADI is controlled by 3

PLCs that operate over 103 network sensors. Moreover, the testbed

is equipped with a SCADA system. WADI consists of three main

processes: P1 (Primary supply and analysis), P2 (Elevated reservoir

with Domestic grid and leak detection), and P3 (Return process).

For anomaly detection purposes, we consider sensor data from P1

and P2, since the return process is only implemented for recycling

water. Considering stages P1 and P2, we have data coming every

second from 82 sensors. In this work, we use two WADI datasets.

The first dataset contains data of 14 days of normal operations. The

second contains 15 attacks on physical processes spanned over two

days of operations. This dataset is available on request [28].

We primarily use the WADI dataset for two reasons: i) to show

that the discussed detection mechanism applies to real-world ICS

data, and ii) to see whether our attack methodology is transferable

from a scenario inwhich simulated data are used to another scenario

in which real data are used.

5.3 Evaluation Setup
We evaluate the detection Recall over datasets under original con-

ditions (i.e., no concealment attacks), replay, iterative, and learning-

based concealment attacks. The Recall (True Positive Rate) is de-
fined as:

Recall =
TP

TP + FN
, (5)

whereTP stands for True Positive and FN for False Negative. Recall

measures the rate of correctly classified positive instances. When

the anomaly detector is tuned, a higher Recall means that the anom-

aly detector is correctly retrieving anomalies. The attacker’s con-

cealment goal can be expressed in terms of Recall : the concealment

attack is successful if the detector Recall over the concealed tuples

goes to 0. The closer the Recall comes to 0, the higher the amount of

misclassified tuples. Note that we launch our concealment attacks

http://www.batadal.net/data.html
http://www.batadal.net/data.html

ACSAC 2020, December 7–11, 2020, Austin, USA A. Erba et al.

over the instances of anomalous data, i.e., data reporting ground

truth ‘under attack’.

Both iterative and learning based attacks are implemented using

Python 3.7.1; neural networks are implemented and trained using

Keras 2.3.1 with TensorFlow 1.11.0 backend. Experiments use a lap-

top equipped with Intel i7-7500U CPU, 16GB of RAM, and NVIDIA

GeForce 940MX GPU 4GB.

Training of Attack Detector. For both BATADAL and WADI,

we trained the third party attack detector [51] on sensor readings

occurring during normal operational data.

For the BATADAL dataset (where sensor readings are sampled

every 15 minutes), we found that parameter window = 3 quarter

of hours is a reasonable decision boundary to flag correctly at-

tacks and do not raise False alarms. This gives a Accuracy = 0.93,

Precision = 0.90, Recall = 0.60, FPR = 0.01. Changing the window
parameter, we can increase the Recall at the price of decreasing
Precision that means raising a higher number of False Alarms.

For the WADI dataset, we found that parameter window = 60 sec-

onds is a reasonable decision boundary to flag correctly attacks and

distinguish them from False Positives. This gives a Accuracy = 0.97,

Precision = 0.77, Recall = 0.68, FPR = 0.01.

Results are in line with the current state of the art detection over

the BATADAL dataset [51] and WADI [16].

Replay attack. In this attack, the attacker replays for the whole

duration of the physical manipulation, using the sensor readings

as recorded at the same hour s days before (assuming that process

operations are often periodic within 24h). s is chosen to let the

replay contain only normal operations data. For example, given a

physical manipulation that lasts 50 hours, we replay sensor readings

as happened 72 hours earlier.

Iterative attack. The attacker manipulates variables required to

find a solution (according to the two stopping criteria introduced

in Section 4.3 and constraints over modifiable sensor readings).

For BATADAL dataset, we tuned the two stopping criteria via

grid search to guarantee a trade-off between the decrease of de-

tection accuracy and computational time. Specifically we selected

patience = 15 and the budget = 200. For WADI dataset, the iterative

parameters (following the same rational as in BATADAL case) we

choose are patience = 40 and the budget = 300. The result of this

experiment depends on the detection mechanism. The attacker is

using the oracle to determine if the concealment is successful.

Learning based attack. For the learning based attack, the attacker
uses an autoencoder (AE) as the generator and sends predicted read-
ings to the SCADA. According to the attacker’s constraints, we train

an autoencoder over the readable features. We used sigmoid as ac-

tivation function, Gorlot initialization [19] as weights initializer

and mean squared error as loss function. Moreover, we split the

data in train
2

3
and validation

1

3
, use early stopping [29] to avoid

overfitting and reduce learning rate on plateaus [30]. Depending

on the constrained scenario (i.e., the features that the attacker can

read X or the amount of data that she spoofed
ˆD), the adversari-

ally trained autoencoder has a different number of input neurons.

Given n as input/output dimension, the autoencoder is composed

of 3 hidden-layers with respectively 2n, 4n, 2n neurons. To per-

form and evaluate the learning based attacks, we trained 83 models

with BATADAL data and 63 for WADI. In the unconstrained case,

Table 2: Detector Recall (BATADAL (B) and WADI (W)
datasets), before and after unconstrained concealment at-
tacks. The column ‘Original’ refers to the detection Recall
over the data without concealment; ‘Replay’, reports the Re-
call after replay attack, while ‘Iterative’ and ‘Learning based’
columns report the Recall after our proposed adversarial
concealment attacks.

Detection Recall

Data Original Replay Iterative Learning based

B 0.60 0 0.14 0.14

W 0.68 0.07 0.07 0.31

Table 3: Average required time (in seconds) to manipulate
sensor readings. ‘Replay’ column is empty as replay attacks
do not require computation. ’Iterative’ and ‘Learning based’
columns report the mean and std deviation required to com-
pute the manipulation sensor readings at a given time step.

Computational time, mean(µx̄) and std(σx̄)

Replay Iterative Learning based

Data µx̄ [s] σx̄ µx̄ [s] σx̄

B - 2.28 2.46 0.002 0.005

W - 0.60 0.41 0.005 0.002

for the BATADAL dataset (43 variables), we train an autoencoder

with 64 and 128 units for the first/third and second hidden layers,

respectively, training requires 18 epochs (2 seconds/epoch), for a

total of 36 seconds to train the model; for the WADI dataset (82

variables), we use 128 and 256 units, training required 7 epochs (64

seconds/epoch), for a total of 488 seconds to train the model.

5.4 Unconstrained Concealment Attack
In this experiments, we assume the Unconstrained attacker (D,X)

that is able to read and control all the reported sensor readings, in

the White box (f ,w) and Black Box(

ACSAC 2020, December 7–11, 2020, Austin, USA A. Erba et al.

Table 1: Classification of our attacker models based on
training data and features, Data tuple (D,X) and algorithm
knowledge and parameters. Access:

ACSAC 2020, December 7–11, 2020, Austin, USA A. Erba et al.

Table 1: Classification of our attacker models based on
training data and features, Data tuple (D,X) and algorithm
knowledge and parameters. Access: =full,G#=partial. For all
white box attacks, the Defense tuple is (f ,w), for all black
box attacks, (��AAˆf ,�Ẑw).

Attacker’s X

Constraints D Read Write

Unconstrained § 5.4
X Partially § 5.5 G#
X Fully § 5.5 G# G#

D § 5.5 G#

the adversarial attack has to find a perturbation
®δ to minimize the

reconstruction error between the input ®x + δ and output
ˆ®x of the

Reconstruction-based detector. Please refer to Section 4.1 for fur-

ther details on the target model. In a mathematical notation, it can

be written as the following constrained optimization problem in

Equation 1:

minimize MSE =
1

n

n∑
i=1

(x̂i − (xi + δi))
2

s.t.
®δ ∈ constraint space (Section 3.2.2)

real-time constraints imposed by CPS

y(®x + ®δ) = ‘safe’

(1)

We note that the attacks we demonstrate are not necessarily op-

timal, as the constraints are satisfied with non unique solutions.The

attacks are conducted in real-time (i.e., in milliseconds per time

step), not a posteriori (i.e., applied retrospectively to a longer se-

quence of sensor readings after the attacker fully receives them).

3.2.2 Attacker Knowledge. Using the adversarial learning notation

introduced in Section 2, a concealment attack is characterized by

the knowledge of the attacker about the training datasetD, feature

set X, learning algorithm f , and trained parametersw . In the ICS

setting, the attacker can be characterized differently according

to his knowledge of the attacked system. In order to explain our

attacker model, we split the tuple (D,X, f ,w) into two: the Data

tuple (D,X) and Defense tuple (f ,w). We assume the attacker

to be unconstrained or constrained w.r.t. the Data tuple, i.e., the

sensor readings X that she can observe and manipulate and the

data D that she eavesdrops. Moreover, we classify attackers as

white box, black box, w.r.t. the Defense tuple, i.e., the knowledge of
learning algorithm f , and trained parametersw . Table 1, provides

an overview of the attacker’s constraints considered in this work.

Constraints over Data Tuple.According to the Data tuple (D,X),
we classify the attacker as:

• Unconstrained (D,X), in which the attacker can manipulate

all n features in ®x , and her perturbations are limited in terms

of L0 distance to be at most n.
• Features Partially Constrained (D, ˆX), we assume that the

attacker is constrained to perturb a subset of k out of n
variables in ®x , and her perturbations are limited in terms of

L0 distance to not exceed distance k .

• Features Fully-Constrained (D, ˆX), we assume that the at-

tacker is constrained to observe and perturb a subset of k
out of n variables in ®x , and her perturbations are limited in

terms of L0 distance to not exceed distance k .
• Data Constrained (ˆD,X), we assume that the attacker is

constrained to eavesdrop a limited quantity of process data

that are used for training its attacks.

Selection of Constrained Features The subset of features that can
bemodified is highly use-case dependent (i.e., which link is attacked,

which device was compromised). To demonstrate the generality

of our findings, we explored two types of constraints: a best-case

scenario and a topology-based scenario.

For the best-case scenario, we assume that the selection of the

k out of n manipulated features can be made by the attacker to

maximize the attack impact. This arguably represents a best-case

scenario for the constrained attacker (i.e., an attacker constrained to

features that happen to be relatively ideal for the attacker). For the

second scenario, constraints are derived from the network topology.

We assume that the attacker can compromise a single substation

(or PLC) in the network, and the selection of k out of n features

is based on which sensors are interconnected to the compromised

substation.

Knowledge of Defense Tuple. We classify the attacker according

to their knowledge of the Defense tuple (f ,w), as:

• White box (f ,w), the attacker knows the exact system model

and its variables (such as the currently estimated system

state), and the exact thresholds of the classification system.

Thus, the white box attacker is characterized by the knowl-

edge of (f ,w). With that information, the attacker could ei-

ther run a basic exhaustive search, basic optimization strate-

gies, or more sophisticated approaches (especially solutions

that use the gradient signal from the attacked model).

• Black box (��AA
ˆf ,�Ẑw), the attacker is aware of the general de-

tection scheme, but unaware of internal variables, architec-

ture and exact thresholds used in the classification. We note

that our black box attacker is different from the one defined

in [6], (ˆf , ŵ). Our attacker does not require the knowledge

of f or its approximation
ˆf . In our case, the nature of the

environment imposes that the attacker cannot query the

system even in a black box manner to get feedback on the

provided labels or confidence scores (this is done for example

in [12, 14, 56, 61]), as this would mean potentially raising

the alarm. Thus, we consider that the only assumption of

the attacker concerning f is that Deep Learning techniques

are used for detection.

Given this taxonomy, the attacker can be classified for example,

as unconstrained white box.

3.3 Example Constraint Scenarios
We argue our Constrained and Unconstrained attacks represent

a realistic threat model in the ICS setting and fit the taxonomy

of attacks in the AML literature. In particular, practical ICS are

typically composed of multiple stages, and each stage is controlled

by a different PLC (i.e., different brands/models). Moreover, the ICS

can be deployed in a physically distributed manner. For example,

=full,

ACSAC 2020, December 7–11, 2020, Austin, USA A. Erba et al.

Table 1: Classification of our attacker models based on
training data and features, Data tuple (D,X) and algorithm
knowledge and parameters. Access: =full,G#=partial. For all
white box attacks, the Defense tuple is (f ,w), for all black
box attacks, (��AAˆf ,�Ẑw).

Attacker’s X

Constraints D Read Write

Unconstrained § 5.4
X Partially § 5.5 G#
X Fully § 5.5 G# G#

D § 5.5 G#

the adversarial attack has to find a perturbation
®δ to minimize the

reconstruction error between the input ®x + δ and output
ˆ®x of the

Reconstruction-based detector. Please refer to Section 4.1 for fur-

ther details on the target model. In a mathematical notation, it can

be written as the following constrained optimization problem in

Equation 1:

minimize MSE =
1

n

n∑
i=1

(x̂i − (xi + δi))
2

s.t.
®δ ∈ constraint space (Section 3.2.2)

real-time constraints imposed by CPS

y(®x + ®δ) = ‘safe’

(1)

We note that the attacks we demonstrate are not necessarily op-

timal, as the constraints are satisfied with non unique solutions.The

attacks are conducted in real-time (i.e., in milliseconds per time

step), not a posteriori (i.e., applied retrospectively to a longer se-

quence of sensor readings after the attacker fully receives them).

3.2.2 Attacker Knowledge. Using the adversarial learning notation

introduced in Section 2, a concealment attack is characterized by

the knowledge of the attacker about the training datasetD, feature

set X, learning algorithm f , and trained parametersw . In the ICS

setting, the attacker can be characterized differently according

to his knowledge of the attacked system. In order to explain our

attacker model, we split the tuple (D,X, f ,w) into two: the Data

tuple (D,X) and Defense tuple (f ,w). We assume the attacker

to be unconstrained or constrained w.r.t. the Data tuple, i.e., the

sensor readings X that she can observe and manipulate and the

data D that she eavesdrops. Moreover, we classify attackers as

white box, black box, w.r.t. the Defense tuple, i.e., the knowledge of
learning algorithm f , and trained parametersw . Table 1, provides

an overview of the attacker’s constraints considered in this work.

Constraints over Data Tuple.According to the Data tuple (D,X),
we classify the attacker as:

• Unconstrained (D,X), in which the attacker can manipulate

all n features in ®x , and her perturbations are limited in terms

of L0 distance to be at most n.
• Features Partially Constrained (D, ˆX), we assume that the

attacker is constrained to perturb a subset of k out of n
variables in ®x , and her perturbations are limited in terms of

L0 distance to not exceed distance k .

• Features Fully-Constrained (D, ˆX), we assume that the at-

tacker is constrained to observe and perturb a subset of k
out of n variables in ®x , and her perturbations are limited in

terms of L0 distance to not exceed distance k .
• Data Constrained (ˆD,X), we assume that the attacker is

constrained to eavesdrop a limited quantity of process data

that are used for training its attacks.

Selection of Constrained Features The subset of features that can
bemodified is highly use-case dependent (i.e., which link is attacked,

which device was compromised). To demonstrate the generality

of our findings, we explored two types of constraints: a best-case

scenario and a topology-based scenario.

For the best-case scenario, we assume that the selection of the

k out of n manipulated features can be made by the attacker to

maximize the attack impact. This arguably represents a best-case

scenario for the constrained attacker (i.e., an attacker constrained to

features that happen to be relatively ideal for the attacker). For the

second scenario, constraints are derived from the network topology.

We assume that the attacker can compromise a single substation

(or PLC) in the network, and the selection of k out of n features

is based on which sensors are interconnected to the compromised

substation.

Knowledge of Defense Tuple. We classify the attacker according

to their knowledge of the Defense tuple (f ,w), as:

• White box (f ,w), the attacker knows the exact system model

and its variables (such as the currently estimated system

state), and the exact thresholds of the classification system.

Thus, the white box attacker is characterized by the knowl-

edge of (f ,w). With that information, the attacker could ei-

ther run a basic exhaustive search, basic optimization strate-

gies, or more sophisticated approaches (especially solutions

that use the gradient signal from the attacked model).

• Black box (��AA
ˆf ,�Ẑw), the attacker is aware of the general de-

tection scheme, but unaware of internal variables, architec-

ture and exact thresholds used in the classification. We note

that our black box attacker is different from the one defined

in [6], (ˆf , ŵ). Our attacker does not require the knowledge

of f or its approximation
ˆf . In our case, the nature of the

environment imposes that the attacker cannot query the

system even in a black box manner to get feedback on the

provided labels or confidence scores (this is done for example

in [12, 14, 56, 61]), as this would mean potentially raising

the alarm. Thus, we consider that the only assumption of

the attacker concerning f is that Deep Learning techniques

are used for detection.

Given this taxonomy, the attacker can be classified for example,

as unconstrained white box.

3.3 Example Constraint Scenarios
We argue our Constrained and Unconstrained attacks represent

a realistic threat model in the ICS setting and fit the taxonomy

of attacks in the AML literature. In particular, practical ICS are

typically composed of multiple stages, and each stage is controlled

by a different PLC (i.e., different brands/models). Moreover, the ICS

can be deployed in a physically distributed manner. For example,

=partial. For
all white box attacks, the Defense tuple is (f ,w), for all black
box attacks, ��AA

ˆf �Ẑw

Attacker’s X

Constraints D Read Write

Unconstrained § 5.4
X Partially § 5.5 G#
X Fully § 5.5 G# G#

D § 5.5 G#

the adversarial attack has to find a perturbation
®δ to minimize the

reconstruction error between the input ®x + δ and output
ˆ®x of the

Reconstruction-based detector. Please refer to Section 4.1 for fur-

ther details on the target model. In a mathematical notation, it can

be written as the following constrained optimization problem in

Equation 1:

minimize MSE =
1

n

n∑
i=1

(x̂i − (xi + δi))
2

s.t.
®δ ∈ constraint space (Section 3.2.2)

real-time constraints imposed by CPS

y(®x + ®δ) = ‘safe’

(1)

We note that the attacks we demonstrate are not necessarily op-

timal, as the constraints are satisfied with non unique solutions.The

attacks are conducted in real-time (i.e., in milliseconds per time

step), not a posteriori (i.e., applied retrospectively to a longer se-

quence of sensor readings after the attacker fully receives them).

3.2.2 Attacker Knowledge. Using the adversarial learning notation

introduced in Section 2, a concealment attack is characterized by

the knowledge of the attacker about the training datasetD, feature

set X, learning algorithm f , and trained parametersw . In the ICS

setting, the attacker can be characterized differently according

to his knowledge of the attacked system. In order to explain our

attacker model, we split the tuple (D,X, f ,w) into two: the Data

tuple (D,X) and Defense tuple (f ,w). We assume the attacker

to be unconstrained or constrained w.r.t. the Data tuple, i.e., the

sensor readings X that she can observe and manipulate and the

data D that she eavesdrops. Moreover, we classify attackers as

white box, black box, w.r.t. the Defense tuple, i.e., the knowledge of
learning algorithm f , and trained parametersw . Table 1, provides

an overview of the attacker’s constraints considered in this work.

Constraints over Data Tuple.According to the Data tuple (D,X),
we classify the attacker as:

• Unconstrained (D,X), in which the attacker can manipulate

all n features in ®x , and her perturbations are limited in terms

of L0 distance to be at most n.
• Features Partially Constrained (D, ˆX), we assume that the

attacker is constrained to perturb a subset of k out of n
variables in ®x , and her perturbations are limited in terms of

L0 distance to not exceed distance k .

• Features Fully-Constrained (D, ˆX), we assume that the at-

tacker is constrained to observe and perturb a subset of k
out of n variables in ®x , and her perturbations are limited in

terms of L0 distance to not exceed distance k .
• Data Constrained (ˆD,X), we assume that the attacker is

constrained to eavesdrop a limited quantity of process data

that are used for training its attacks.

Selection of Constrained Features The subset of features that can
bemodified is highly use-case dependent (i.e., which link is attacked,

which device was compromised). To demonstrate the generality

of our findings, we explored two types of constraints: a best-case

scenario and a topology-based scenario.

For the best-case scenario, we assume that the selection of the

k out of n manipulated features can be made by the attacker to

maximize the attack impact. This arguably represents a best-case

scenario for the constrained attacker (i.e., an attacker constrained to

features that happen to be relatively ideal for the attacker). For the

second scenario, constraints are derived from the network topology.

We assume that the attacker can compromise a single substation

(or PLC) in the network, and the selection of k out of n features

is based on which sensors are interconnected to the compromised

substation.

Knowledge of Defense Tuple. We classify the attacker according

to their knowledge of the Defense tuple (f ,w), as:

• White box (f ,w), the attacker knows the exact system model

and its variables (such as the currently estimated system

state), and the exact thresholds of the classification system.

Thus, the white box attacker is characterized by the knowl-

edge of (f ,w). With that information, the attacker could ei-

ther run a basic exhaustive search, basic optimization strate-

gies, or more sophisticated approaches (especially solutions

that use the gradient signal from the attacked model).

• Black box (��AA
ˆf ,�Ẑw), the attacker is aware of the general de-

tection scheme, but unaware of internal variables, architec-

ture and exact thresholds used in the classification. We note

that our black box attacker is different from the one defined

in [6], (ˆf , ŵ). Our attacker does not require the knowledge

of f or its approximation
ˆf . In our case, the nature of the

environment imposes that the attacker cannot query the

system even in a black box manner to get feedback on the

provided labels or confidence scores (this is done for example

in [12, 14, 56, 61]), as this would mean potentially raising

the alarm. Thus, we consider that the only assumption of

the attacker concerning f is that Deep Learning techniques

are used for detection.

Given this taxonomy, the attacker can be classified for example,

as unconstrained white box.

3.3 Example Constraint Scenarios
We argue our Constrained and Unconstrained attacks represent

a realistic threat model in the ICS setting and fit the taxonomy

of attacks in the AML literature. In particular, practical ICS are

typically composed of multiple stages, and each stage is controlled

by a different PLC (i.e., different brands/models). Moreover, the ICS

can be deployed in a physically distributed manner. For example,

,

ACSAC 2020, December 7–11, 2020, Austin, USA A. Erba et al.

whereTP stands for True Positive and FN for False Negative. Recall

measures the rate of correctly classified positive instances. When

the anomaly detector is tuned, a higher Recall means that the anom-

aly detector is correctly retrieving anomalies. The attacker’s con-

cealment goal can be expressed in terms of Recall : the concealment

attack is successful if the detector Recall over the concealed tuples

goes to 0. The closer the Recall comes to 0, the higher the amount of

misclassified tuples. Note that we launch our concealment attacks

over the instances of anomalous data, i.e., data reporting ground

truth ‘under attack’.

Both iterative and learning based attacks are implemented using

Python 3.7.1; neural networks are implemented and trained using

Keras 2.3.1 with TensorFlow 1.11.0 backend. Experiments use a lap-

top equipped with Intel i7-7500U CPU, 16GB of RAM, and NVIDIA

GeForce 940MX GPU 4GB.

Training of Attack Detector. For both BATADAL and WADI,

we trained the third party attack detector [51] on sensor readings

occurring during normal operational data.

For the BATADAL dataset (where sensor readings are sampled

every 15 minutes), we found that parameter window = 3 quarter

of hours is a reasonable decision boundary to flag correctly at-

tacks and do not raise False alarms. This gives a Accuracy = 0.93,

Precision = 0.90, Recall = 0.60, FPR = 0.01. Changing the window
parameter, we can increase the Recall at the price of decreasing
Precision that means raising a higher number of False Alarms.

For the WADI dataset, we found that parameter window = 60 sec-

onds is a reasonable decision boundary to flag correctly attacks and

distinguish them from False Positives. This gives a Accuracy = 0.97,

Precision = 0.77, Recall = 0.68, FPR = 0.01.

Results are in line with the current state of the art detection over

the BATADAL dataset [51] and WADI [16].

Replay attack. In this attack, the attacker replays for the whole

duration of the physical manipulation, using the sensor readings

as recorded at the same hour s days before (assuming that process

operations are often periodic within 24h). s is chosen to let the

replay contain only normal operations data. For example, given a

physical manipulation that lasts 50 hours, we replay sensor readings

as happened 72 hours earlier.

Iterative attack. The attacker manipulates variables required to

find a solution (according to the two stopping criteria introduced

in Section 4.3 and constraints over modifiable sensor readings).

For BATADAL dataset, we tuned the two stopping criteria via

grid search to guarantee a trade-off between the decrease of de-

tection accuracy and computational time. Specifically we selected

patience = 15 and the budget = 200. For WADI dataset, the iterative

parameters (following the same rational as in BATADAL case) we

choose are patience = 40 and the budget = 300. The result of this

experiment depends on the detection mechanism. The attacker is

using the oracle to determine if the concealment is successful.

Learning based attack. For the learning based attack, the attacker
uses an autoencoder (AE) as the generator and sends predicted read-
ings to the SCADA. According to the attacker’s constraints, we train

an autoencoder over the readable features. We used sigmoid as ac-

tivation function, Gorlot initialization [19] as weights initializer

and mean squared error as loss function. Moreover, we split the

data in train
2

3
and validation

1

3
, use early stopping [29] to avoid

Table 2: Detector Recall (BATADAL (B) and WADI (W)
datasets), before and after unconstrained concealment at-
tacks. The column ‘Original’ refers to the detection Recall
over the data without concealment; ‘Replay’, reports the Re-
call after replay attack, while ‘Iterative’ and ‘Learning based’
columns report the Recall after our proposed adversarial
concealment attacks.

Detection Recall

Data Original Replay Iterative Learning based

B 0.60 0 0.14 0.14

W 0.68 0.07 0.07 0.31

Table 3: Average required time (in seconds) to manipulate
sensor readings. ‘Replay’ column is empty as replay attacks
do not require computation. ’Iterative’ and ‘Learning based’
columns report the mean and std deviation required to com-
pute the manipulation sensor readings at a given time step.

Computational time, mean(µx̄) and std(σx̄)

Replay Iterative Learning based

Data µx̄ [s] σx̄ µx̄ [s] σx̄

B - 2.28 2.46 0.002 0.005

W - 0.60 0.41 0.005 0.002

overfitting and reduce learning rate on plateaus [30]. Depending

on the constrained scenario (i.e., the features that the attacker can

read X or the amount of data that she spoofed
ˆD), the adversari-

ally trained autoencoder has a different number of input neurons.

Given n as input/output dimension, the autoencoder is composed

of 3 hidden-layers with respectively 2n, 4n, 2n neurons. To per-

form and evaluate the learning based attacks, we trained 83 models

with BATADAL data and 63 for WADI. In the unconstrained case,

for the BATADAL dataset (43 variables), we train an autoencoder

with 64 and 128 units for the first/third and second hidden layers,

respectively, training requires 18 epochs (2 seconds/epoch), for a

total of 36 seconds to train the model; for the WADI dataset (82

variables), we use 128 and 256 units, training required 7 epochs (64

seconds/epoch), for a total of 488 seconds to train the model.

5.4 Unconstrained Concealment Attack
In this experiments, we assume the Unconstrained attacker (D,X)

that is able to read and control all the reported sensor readings, in

theWhite box (f ,w) and Black Box ��AA
ˆf �Âx scenarios.We discuss

the results of our evaluation of the detector for both datasets in

several scenarios (see Table 2). We evaluated the performance of our

concealment attacks over the time steps with ground truth ‘under

attack’ labels only, i.e., we exclude normal operation data time steps

from the computation of Recall for this attack evaluation.

The first row of Table 2 reports the average results obtained with

the three different attack strategies. In this setting, the replay attack

is giving 0 Recall over the replayed sensor readings. This means

that when the attacker can manipulate all the sensor readings,

) scenarios. We discuss

the results of our evaluation of the detector for both datasets in

several scenarios (see Table 2). We evaluated the performance of our

concealment attacks over the time steps with ground truth ‘under

attack’ labels only, i.e., we exclude normal operation data time steps

from the computation of Recall for this attack evaluation.

The first row of Table 2 reports the average results obtained with

the three different attack strategies. In this setting, the replay attack

is giving 0 Recall over the replayed sensor readings. This means

that when the attacker can manipulate all the sensor readings,

the anomaly detector is no more able to spot the attack occurring

over the physical process. Considering the iterative and learning

based approaches, we notice that the Recall is 0.14, this represents

a significant drop in detector performance, but not as effective as

the replay of all sensors.

The second row of Table 2 refers to concealment attacks over the

WADI dataset. The result over this dataset shows that the replay

Constrained Concealment Attacks against Reconstruction-based detectors in ICS ACSAC 2020, December 7–11, 2020, Austin, USA

attack can hide the anomaly occurring over the CPS. The perfor-

mance of the iterative equals the one of the replay attack. Finally,

the learning based approach is underperforming the other meth-

ods. Despite this, the detector’s Recall reduces more than 50% after

learning based manipulation.

Computational Time. Table 3 reports the average time required

to compute the adversarial examples. In contrast to iterative and

learning based, the replay attack does not require computation. The

iterative approach requires an amount of time that depends on the

algorithm computational budgets. The black box approach requires

a constant amount of time since it consists of a neural network

prediction. Given our real-time constraints of adversarial examples

computation (i.e., target time within milliseconds), we can conclude

that learning based approach easily meets the requirements. In the

BATADAL case (where the sampling time is 15 minutes), we do

not require more than 2ms on average to compute an adversarial

example. In the WADI case (where sampling time is 1 second), on

average, we do not require more than 5ms to compute an adversarial

example. The iterative attack is slower, but on average, still below

the sampling intervals.

Summary of Unconstrained Attacks findings. When the at-

tacker is free to manipulate all the sensor readings, results show

that replay attacks hide anomalies occurring over the physical pro-

cess. First, a replay attack does not require computation to find

the manipulated set of sensor readings; second, the attacker does

not need to be aware of the detection mechanism; and third, the

considered anomaly detector Recall goes to zero since the replayed

sensor readings do not contain (additional) anomalies. White box,

even though it achieves valuable results, requires computation, and

the attacker needs to be omniscient w.r.t. the defense mechanism.

We note that the learning based attack can decrease the detector’s

Recall without having access to detector’s oracle, with low com-

putational effort (after training) and the same knowledge w.r.t. the

attacked model as the replay attack.

5.5 Constrained Concealment Attack
In the previous subsection, we found that full replay attacks can

be a powerful and low-cost way to evade anomaly detectors if

all features can be replayed. In this section, we demonstrate the

impact of constraints on the attacker, e.g., if the attacker can only

control a subset of the reported sensor values. Specifically, we

perform Partially, Fully, and Data constrained attacks as modeled

in Section 3.2 and show how our proposed iterative and learning

based outperform replay attacks.

Partially Feature-Constrained attack, (D, ˆX). Figure 2 reports

the average result of the constrained attacks over BATADAL and

WADI datasets with an best-case selection of constraints. Due to

space limitations, the constraint selection can be found in Appen-

dix B. In the case of the BATADAL dataset, we note that the replay

attack does not cope well with constraints. Since the anomaly detec-

tor can spot the presence of contextual anomalies, the replay of only

k features results in alarms, with an average detection Recall higher

than in the benign case (i.e., no replay of sensors applied), the value

decreases when 40 out of 43 sensors are replayed. In the case of it-

erative and learning based attacks, we can notice that the detection

Recall is always lower than the original Recall. In the iterative case,

Recall decreases with the number of features that can be modified.

Learning-based attack Recall is not monotonically decreasing with

the number of features that can be modified. Specific constraint

sets better match the physical rules learned by the detector and

allow the creation of more effective adversarial examples. In the

case of WADI, we can observe that the replay attack can diminish

the detector’s Recall, especially when the attacker manipulates 3

or more features. The iterative based attack can achieve the same

Recall as if in the Unconstrained Attack case when manipulating 15

out of 82 features. In the case of learning based attack, results show

that for 3 manipulated (best-case) features, the attack performs

slightly better than in the unconstrained case.

In the case of topology-based constraints, the attacker controls

the sensors connected to 1 PLC in the network. We found that in the

BATADAL case, Recall is reduced to 0.36 with the replay attack and

0.34 with the iterative and learning-based attack. In the WADI case,

Recall increases to 0.64 with the replay attack while it is reduced

to 0.12 in the iterative attack and 0.36 in the learning-based attack.

In addition, in this case the iterative and learning-based approach

overcomes the limitations of constrained replay attacks, especially

in the case of theWADI dataset (Table 7 in the Appendix reports the

numerical Recall scores found in the different constrained settings).

Fully Feature-Constrained Attacker, (D, ˆX). In the case of the

fully constrained attacker, Replay and Iterative attack approach do

not change, since those two methods do not exploit correlations

among features to output the perturbations. The learning-based

attack is the only one affected by these constraints, i.e., the adver-

sarial network is trained on the constrained set of sensor readings.

We launched this attack with the topology based constraints, and

we found that also in this case, when the attacker gains control of

a PLC over the network, the detection Recall can be compromised

by the attacker. In the BATADAL case, Recall is reduced to 0.39. In

the WADI case is reduced to 0.45.

Data Constrained Attacker, (ˆD,X). We also investigated the

impact of less available normal data (i.e., a fraction of
ˆD) on the

achieved reduction in detection Recall for the black box attacker.

Due to space constraints, the detailed results are presented in Ap-

pendix C. For BATADAL, the resultingmean detection Recall ranges

from 0.14 for 100% of
ˆD available for AE training to 0.22 for 5% of

ˆD available. For WADI, we found that the attacker can leverage on

5% of normal operations (i.e., only 16 hours) to decrease detector

Recall to 0.24.

Summary of Constrained Attacks findings.Our results demon-

strate that replay attacks perform worse if a limited set of sensors

can be manipulated. In particular, if the replay attack is constrained

to manipulate less the 95% of the features the detector’s Recall

increases due to contextual anomalies that are created. For our iter-

ative and learning based approaches, this effect does not occur, as

the two attacks reduce the detector’s Recall without introducing

contextual anomalies. In the WADI, the attacker that controls 4%

of the features succeeds in the evasion using the iterative attack.

In addition, an attacker that collects a little amount of data
ˆD can

train the adversarial autoencoder and perform the black box attack.

ACSAC 2020, December 7–11, 2020, Austin, USA A. Erba et al.

0 5 10 15 20 25 30 35 40
Controlled sensors k

0.00

0.25

0.50

0.75

1.00
Re

ca
ll

replay iterative learning original = 0.6

(a) BATADAL

0 10 20 30 40 50 60 70 80
Controlled sensors k

0.00

0.25

0.50

0.75

1.00

Re
ca

ll

replay iterative learning original = 0.68

(b) WADI

Figure 2: Impact of Partially Constrained attacker (best-case scenario), comparison between replay attack and our proposed
concealment attacks. In the constrained scenario, we notice that replay attack performs bad increasing detector’s Recall and
raising more alarms than the original data without concealment. This is due to contextual anomalies introduced as part of
large-scale replay. Both learning based and iterative approaches outperform the replay attack as they do not introduce con-
textual anomalies and reduce detector’s Recall manipulating few features.

0 5 10 15 20 25 30 35 40
Controlled sensors k

0.00

0.25

0.50

0.75

1.00

Re
ca

ll

replay learning original = 0.63

(a) LSTM

0 5 10 15 20 25 30 35 40
Controlled sensors k

0.00

0.25

0.50

0.75

1.00

Re
ca

ll

replay learning original = 0.67

(b) CNN

Figure 3: Generizability of our proposed Learning based attack compared with replay attack. Attack to LSTM (a) and CNN (b)
based defenses on BATADAL dataset.

5.6 Generalizability of Learning Based Attack
In this section, we evaluate the generalizability of our proposed

learning based attack. We consider different reconstruction-based

anomaly detectors trained on BATADAL dataset and apply the

concealment attack computed with the adversarially trained au-

toencoder as proposed in our learning based attack. Our target

Deep Architecture is an LSTM reconstruction-based anomaly detec-

tor as proposed in [20] and a CNN reconstruction-based anomaly

detector as proposed in [32]. Since those detectors are not avail-

able as open source, we implemented their architecture with Keras

following the details found in the paper. The LSTM detector was

trained to minimize the MSE loss. The network takes 8 timesteps

of the multivariate time series as input (input size 8x43). The in-

put is processed by one LSTM layer with output size 43, followed

by a fully connected layer with 43 neurons as output dimension.

Performance of the LSTM based anomaly detector resulted in Ac-
curacy = 0.94, Precision = 0.89, Recall = 0.63, FPR = 0.01. The CNN

detector was trained to minimize the MSE loss. The network takes

2 timesteps of the multivariate time series as input (input size 2x43).

The input is processed by three stacked 1D convolutional layers

(respectively with 64, 128 and 256 neurons), each convolutional

layer is followed by a 1D Max Pooling Layer layer. The last Pooling

layer is followed by a flatten and a dropout layer. Dropout layer

connects to the fully connected output layer with dimension 43.

CNN based performance after training resulted in Accuracy = 0.95,

Precision = 0.90, Recall = 0.67, FPR = 0.01.

Results in Figure 3 show how the detection Recall diminishes

when targeted with replay and learning based attacks. In particular,

a replay attack can evade detection only in the case in which at

least 40 out of 43 sensors are controlled by the attacker (following

previous results). Results over learning based attack, despite the

different architectures for the offense (Autoencoder) and defense

(LSTM and CNN), show that the learning based concealment attack

is transferable. In particular, the LSTM architecture appears more

vulnerable to concealment attacks, since the learning based attack

is achieving higher concealment efficacy than AE and CNN based

defenses. Concealment efficacy over CNN defense is comparable

to Autoencoder defense, notwithstanding the original Recall of

CNN detector is higher than the other considered defense. These

results allow us to conclude that the proposed learning based attack

efficacy is independent from the Reconstruction-based anomaly

detector.

5.7 Real-time Concealment Attacks
In order to test the real-time feasibility of our attacks, we deployed

the anomaly detector [51] in WADI Testbed, and then attacked it

Constrained Concealment Attacks against Reconstruction-based detectors in ICS ACSAC 2020, December 7–11, 2020, Austin, USA

Table 4: Real-time detection of process manipulations in
WADI Testbed. We replicated anomalies in WADI dataset.

Attack Duration Attack Detected concealment

Identifier (minutes) detected Iterative Learning

W1 22 ✓ ✗ ✗

W7 4 ✓ ✗ ✗

W8 10 ✗ ✗ ✗

W9 1 ✓ ✗ ✗

W14 2 ✓ ✗ ✗

in real-time. We collected 15 hours of normal operations occurring

over the ICS. We recorded 62 sensors sampled every 10 seconds.

In this case, we tuned the window parameter to 30, which means

that the detector is considering the sensor readings occurring in

the last 5 minutes. First, we tested the reliability of the system;

we left the system running 7 hours without anomalies occurring.

We obtained 2 false positives instances occurring for 10 minutes

each. We then performed actuators manipulation in the system.

In Table 4 we report the summary of the tested anomalies. We

replicated anomalies reported in the WADI dataset.

While anomalies were occurring, we also launched our Uncon-

strained concealment attacks in WADI Testbed to assess their feasi-

bility and efficacy. We tested both the iterative and learning based

approach in real-time by simulating the sensors value manipulation

done by the attacker, all the instances of the anomalies occurring

in the system were successfully misclassified. In Table 4, the last

two columns summarize the results of iterative and learning based

attacks carried out in real-time. In particular, our learning based

modifications took the same time to compute examples as during

the earlier experiments (on average, 5ms), which is much faster

than the sampling rate in the system.

6 RELATEDWORK
We now discuss important related work in the area of anomaly

detection in CPS, and evasion attacks on classifiers.

Anomaly Detection in CPS. Detecting stealthy attacks in CPS

through the identification of process-based anomalies without re-

quiring a detailed physical model is an active research topic. Hadžios-

manović et al. [23] use an autoregressive model on time series ex-

tracted from modbus PLC traffic, evaluating their approach on data

from two water treatment plants; Krotofil et al. [34] use a theoreti-

cal information approach to detect sensor spoofing attacks; Aoudi

et al. [4] use model-free techniques rooted on singular spectrum

analysis to detect structural changes in the process behavior. More

recently, in Autonomous Vehicles setting, control-based techniques

used for anomaly detection such as Control Invariant [13] and Ex-

tended Kalman Filters [7, 45], were found vulnerable to several

stealthy attacks [15, 45, 48].

In addition, various proposals in this space use deep learning

techniques (usually by training a learning-based model on data

gathered during the normal operation of the process) and statisti-

cally comparing the sensor readings with the model’s prediction at

runtime. Wickramasinghe et al. [60] provide an overview of how

Table 5: Recent adversarial learning techniques for evasion,
according to the attacker’s knowledge and the domain of ap-
plication. The setting for our attacks is marked with ⋆.

White Box Grey Box Black Box

(D,X, f ,w) (ˆD,X, f , ŵ) (ˆD, ˆX, ˆf , ŵ)
oracle samples

Malware [58] [22] [14, 61] -

Image [10, 21, 47] [43] [42] -

ICS ⋆ - - ⋆

Deep Learning techniques can be used in the context of CPS secu-

rity. Goh et al. [20] propose an architecture to detect anomalies over

a water treatment testbed with a Recurrent neural network (LSTM-

RNN) used to predict sensor readings, and CUSUM to compute

the difference between the predicted outputs and the actual sensor

readings. Starting from this approach and using the same dataset

for evaluation, Kravchik et al.[32] suggest the use of a convolutional

neural network to perform one-step prediction, while Taormina

et al. [51] propose the autoencoder-based detector (the target of

our attacks). With respect to this former category of deep learning-

based detectors, our proposed approach is the first to propose a

systematic constrained attacker model and identifies vulnerabilities

that affect detector performance. This enables an attacker to hide

the physical anomalies induced on the system, that would be oth-

erwise detected. Our experiments show how those attacks can be

applied in constrained settings and in real time, making the prior

work anomaly detectors ineffective.

Adversarial Learning for Classifier Evasion. The effectiveness
of Adversarial Machine Learning to evade ML-based classifiers

has been demonstrated in a wide range of applications, ranging

from face recognition [47] to voice recognition [62] and malware

detection [61]. Table 5 classifies recent techniques in this domain ac-

cording to the adversary’s knowledge on the classifier’s algorithm

and training dataset. In the iterative scenario (i.e., the adversary

knows the internals of the trained model and the training set en-

tirely), Rndic and Laskov [58] present a case study on the evasion of

PDFRate, a malicious PDF detector based on random forests, using

an white box gradient-based evasion method [5], comparing it to a

black box mimicry attack, and discussing the attack effectiveness

according to different attacker models. After the seminal paper

that demonstrated the existence of adversarial examples for neu-

ral networks [50], work has shifted to Deep Learning. Goodfellow

et al. [21] study the cause of adversarial examples and devise a

fast gradient method to perform adversarial perturbations, demon-

strating their results in the image classification context under a

perfect-knowledge iterative scenario. More recently, Carlini and

Wagner [10] defeat a defensive technique known as defensive distil-

lation [44]. White box techniques have also been applied to defeat

face recognition, also through perturbations in physical objects [47].

In more restrictive scenarios, the adversary is only aware of

the general structure of the model and how features are extracted.

Papernot et al. [43] use this imperfect knowledge to build a sur-

rogate model and demonstrate the effectiveness in source-target

misclassification (image recognition). Grosse et al. [22] generalize

ACSAC 2020, December 7–11, 2020, Austin, USA A. Erba et al.

the adversarial example crafting algorithm presented in [43] to

malware detection systems. In other cases, the adversary attacks a

classifier while querying the system under attack as an oracle. This

is the case of attacks against proprietary online learning systems:

to evade an online malware classifier, Xu et al. [61] leverage the

fact that the target systems output the classification score to build a

genetic algorithm that morphs the adversarial examples into being

undetected. More recently, Dang et al. [14] lifted the assumption

of knowing the classification score, attacking oracle-like black box

classifiers that only output a binary label; Papernot et al. [42] work

similarly in the context of multi-class image classification.

W.r.t. prior work, in our learning based attack the adversary does

not rely on querying the classifier as an oracle, or on building a

surrogate learner; instead, we exploit the characteristics of the CPS

domain to lift this requirement.

7 CONCLUSIONS
In this work, we started by formalizing an attacker model for real-

world ICS and provided AML taxonomy for it. We then presented

the first real-time concealment attacks on reconstruction-based

anomaly detectors in the context of Industrial Control Systems.

We argued that such attacks present four unique challenges, and

addressed them proposing iterative and learning based attacks. Our

white box attacker uses the iterative approach with a detection

oracle, while the black box attacker uses an autoencoder to hide

anomalies.

Using data from two water distribution systems, we demon-

strated that our attacks are feasible in general, and outperform

replay attacks when the attacker is constrained to control of less

the 95% of the features. Moreover, we show that for the BATADAL

dataset, our novel learning based attack using autoencoder was able

to reduce detection Recall as efficiently as the iterative attack (Recall

dropped from 0.60 to 0.14 in both cases). Our results demonstrate

that the proposed autoencoder based attack achieves successful con-

cealment without knowledge of the targeted Reconstruction-based

anomaly detector (only using normal operational data), without

knowledge of the physical model equations and is computationally

cheap (after training).

We implemented our attacks in a real testbed and showed that

malicious data could be generated on-the-fly, i.e., in between each

sampling step (every 10s, actual example generation took on aver-

age 5ms for iterative). That demonstrates that the proposed attacks

are allowing attackers to perform constrained concealment attacks

on dynamic systems in real-time. In prior work, manipulations are

usually performed offline against a dataset or assume that data to

be manipulated can be precisely predicted. Our results show that

reconstruction-based attack detectors proposed in prior work are

vulnerable to manipulation despite the unique challenges in this

setting, and such attacks need to be considered when designing

future attack detection schemes. Implementation is available at our

Online Repository
5
.

ACKNOWLEDGMENTS
Several authors were supported by the National Research Foun-

dation (NRF), Singapore, under its National Cybersecurity R&D

5
https://github.com/scy-phy/ICS-Evasion-Attacks

Programme (Award No. NRF2014NCR-NCR001-40). Politecnico di

Milano received funding for this project from the European Union’s

Horizon 2020 research and innovation programme under the Marie

Skłodowska-Curie grant agreement nr. 690972.

REFERENCES
[1] Marshall Abrams. 2008. Malicious control system cyber security attack case

study–Maroochy Water Services, Australia. (2008).

[2] Chuadhry Mujeeb Ahmed, Venkata Reddy Palleti, and Aditya Mathur. 2017.

WADI: A Water Distribution Testbed for Research in the Design of Secure Cyber

Physical Systems. In Proceedings of the Workshop on Cyber-Physical Systems for
Smart Water Networks). ACM, 25–28. https://doi.org/10.1145/3055366.3055375

[3] S.M. Amin, X. Litrico, S. Sastry, and A.M. Bayen. 2013. Cyber Security of Water

SCADA Systems; Part I: Analysis and Experimentation of Stealthy Deception

Attacks. Control Systems Technology, IEEE Transactions on 21, 5 (2013), 1963–1970.
[4] Wissam Aoudi, Mikel Iturbe, and Magnus Almgren. 2018. Truth Will Out:

Departure-Based Process-Level Detection of Stealthy Attacks on Control Systems.

In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS ’18). ACM, 817–831. https://doi.org/10.1145/3243734.3243781

[5] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić,

Pavel Laskov, Giorgio Giacinto, and Fabio Roli. 2013. Evasion Attacks against

Machine Learning at Test Time. In Machine Learning and Knowledge Discovery
in Databases, Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, and Filip

Železný (Eds.). 387–402.

[6] Battista Biggio and Fabio Roli. 2018. Wild patterns: Ten years after the rise of

adversarial machine learning. Pattern Recognition 84 (2018), 317–331.

[7] P-J Bristeau, Eric Dorveaux, David Vissière, and Nicolas Petit. 2010. Hardware

and software architecture for state estimation on an experimental low-cost small-

scaled helicopter. Control Engineering Practice 18, 7 (2010), 733–746.
[8] A.A. Cárdnas, S.M. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang, and S. Sastry.

2011. Attacks against process control systems: Risk assessment, detection, and

response. In ACM Symp. Inf. Comput. Commun. Security.
[9] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas

Rauber, Dimitris Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey Kurakin.

2019. On Evaluating Adversarial Robustness. arXiv preprint arXiv:1902.06705
(2019).

[10] N. Carlini and D. Wagner. 2017. Towards Evaluating the Robustness of Neural

Networks. In Proc. of the IEEE Symposium on Security and Privacy. 39–57. https:
//doi.org/10.1109/SP.2017.49

[11] Nicholas Carlini and David Wagner. 2018. Audio adversarial examples: Targeted

attacks on speech-to-text. In 2018 IEEE Security and Privacy Workshops (SPW).
IEEE, 1–7.

[12] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. 2017.

Zoo: Zeroth order optimization based black-box attacks to deep neural networks

without training substitute models. In Proceedings of ACM Workshop on Artificial
Intelligence and Security. ACM, 15–26.

[13] Hongjun Choi, Wen-Chuan Lee, Yousra Aafer, Fan Fei, Zhan Tu, Xiangyu Zhang,

Dongyan Xu, and Xinyan Xinyan. 2018. Detecting attacks against robotic vehicles:

A control invariant approach. In Proc. of the ACM Conference on Computer and
Communications Security (CCS). ACM, 801–816.

[14] Hung Dang, Yue Huang, and Ee-Chien Chang. 2017. Evading classifiers by morph-

ing in the dark. In Proc. of the ACM Conference on Computer and Communications
Security (CCS). ACM, 119–133.

[15] Pritam Dash, Mehdi Karimibiuki, and Karthik Pattabiraman. 2019. Out of control:

stealthy attacks against robotic vehicles protected by control-based techniques.

In Proceedings of the 35th Annual Computer Security Applications Conference.
660–672.

[16] Cheng Feng, Venkata Reddy Palleti, Aditya Mathur, and Deeph Chana. 2019. A

Systematic Framework to Generate Invariants for Anomaly Detection in Indus-

trial Control Systems.. In Proc. Network and Distributed System Security Symp.
(NDSS).

[17] Luis Garcia, Ferdinand Brasser, Mehmet H. Cintuglu, Ahmad-Reza Sadeghi,

Osama Mohammed, and Saman A. Zonouz. 2017. Hey, My Malware Knows

Physics! Attacking PLCs with Physical Model Aware Rootkit. In Proceedings of
the Annual Network & Distributed System Security Symposium (NDSS).

[18] Jairo Giraldo, David Urbina, Alvaro Cardenas, Junia Valente, Mustafa Faisal,

Justin Ruths, Nils Ole Tippenhauer, Henrik Sandberg, and Richard Candell. 2018.

A Survey of Physics-Based Attack Detection in Cyber-Physical Systems. ACM
Computing Surveys (CSUR) 51, 4, Article 76 (July 2018), 36 pages. https://doi.org/

10.1145/3203245

[19] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training

deep feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics. 249–256.

[20] Jonathan Goh, Sridhar Adepu, Marcus Tan, and Zi Shan Lee. 2017. Anomaly

detection in cyber physical systems using recurrent neural networks. In High

https://github.com/scy-phy/ICS-Evasion-Attacks
https://doi.org/10.1145/3055366.3055375
https://doi.org/10.1145/3243734.3243781
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1145/3203245
https://doi.org/10.1145/3203245

Constrained Concealment Attacks against Reconstruction-based detectors in ICS ACSAC 2020, December 7–11, 2020, Austin, USA

Assurance Systems Engineering (HASE), 2017 IEEE 18th International Symposium
on. IEEE, 140–145.

[21] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and

Harnessing Adversarial Examples. CoRR abs/1412.6572 (2014).

[22] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and

Patrick McDaniel. 2017. Adversarial Examples for Malware Detection. In Proc. of
the European Symposium on Research in Computer Security. Springer International
Publishing, 62–79.

[23] Dina Hadžiosmanović, Robin Sommer, Emmanuele Zambon, and Pieter H. Hartel.

2014. Through the Eye of the PLC: Semantic Security Monitoring for Indus-

trial Processes. In Proceedings of the 30th Annual Computer Security Applications
Conference (ACSAC ’14). ACM, 126–135. https://doi.org/10.1145/2664243.2664277

[24] Michael A Hayes and Miriam AM Capretz. 2015. Contextual anomaly detection

framework for big sensor data. Journal of Big Data 2, 1 (2015), 2.
[25] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural

computation 9, 8 (1997), 1735–1780.

[26] Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and

JD Tygar. 2011. Adversarial machine learning. In Proceedings of the 4th ACM
workshop on Security and artificial intelligence. ACM, 43–58.

[27] Peter Huitsing, Rodrigo Chandia, Mauricio Papa, and Sujeet Shenoi. 2008. At-

tack taxonomies for the Modbus protocols. International Journal of Critical
Infrastructure Protection 1 (2008), 37–44.

[28] iTrust, Centre for Research in Cyber Security, Singapore University of Technology

and Design. 2017. WADI datatset. (2017). https://itrust.sutd.edu.sg/itrust-

labs_datasets/dataset_info/, Last accessed on: 2020-06-15.

[29] Keras EarlyStopping callback [n. d.]. EarlyStopping. https://keras.io/api/

callbacks/early_stopping. ([n. d.]).

[30] Keras ReduceLROnPlateau callback [n. d.]. ReduceLROnPlateau. https://keras.

io/api/callbacks/reduce_lr_on_plateau/. ([n. d.]).

[31] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[32] Moshe Kravchik and Asaf Shabtai. 2018. Detecting Cyber Attacks in Industrial

Control Systems Using Convolutional Neural Networks. In Proceedings of the
2018 Workshop on Cyber-Physical Systems Security and PrivaCy. ACM, 72–83.

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[34] Marina Krotofil, Jason Larsen, and Dieter Gollmann. 2015. The Process Matters:

Ensuring Data Veracity in Cyber-Physical Systems. In Proceedings of the 10th
ACM Symposium on Information, Computer and Communications Security (ASIA
CCS ’15). ACM, 133–144. https://doi.org/10.1145/2714576.2714599

[35] Shasha Li, Ajaya Neupane, Sujoy Paul, Chengyu Song, Srikanth V Krishnamurthy,

Amit K Roy Chowdhury, and Ananthram Swami. 2019. Stealthy Adversarial

Perturbations Against Real-Time Video Classification Systems. Proceedings of
the Annual Network & Distributed System Security Symposium (NDSS) (2019).

[36] Yao Liu, Peng Ning, and Michael K Reiter. 2011. False data injection attacks

against state estimation in electric power grids. ACM Transactions on Information
and System Security (TISSEC) 14, 1 (2011), 13.

[37] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and

Adrian Vladu. 2018. Towards Deep Learning Models Resistant to Adversarial

Attacks. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.

[38] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan

Frey. 2015. Adversarial autoencoders. arXiv preprint arXiv:1511.05644 (2015).
[39] Yilin Mo and Bruno Sinopoli. 2009. Secure control against replay attacks. In

Communication, Control, and Computing, 2009. Allerton 2009. 47th Annual Allerton
Conference on. IEEE, 911–918.

[40] Yilin Mo, Sean Weerakkody, and Bruno Sinopoli. 2015. Physical authentication

of control systems: Designing watermarked control inputs to detect counterfeit

sensor outputs. IEEE Control Systems Magazine 35, 1 (2015), 93–109.
[41] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal

Frossard. 2017. Universal adversarial perturbations. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 1765–1773.

[42] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik,

and Ananthram Swami. 2017. Practical Black-Box Attacks Against Machine

Learning. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security (ASIA CCS ’17). ACM, New York, NY, USA, 506–519.

https://doi.org/10.1145/3052973.3053009

[43] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. 2016.

The Limitations of Deep Learning in Adversarial Settings. In 2016 IEEE European
Symposium on Security and Privacy (EuroSP). 372–387. https://doi.org/10.1109/
EuroSP.2016.36

[44] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. 2016. Distillation as a

Defense to Adversarial Perturbations Against Deep Neural Networks. In Proc. of
the IEEE Symposium on Security and Privacy. 582–597. https://doi.org/10.1109/SP.
2016.41

[45] Raul Quinonez, Jairo Giraldo, Luis Salazar, Erick Bauman, Alvaro Cardenas,

and Zhiqiang Lin. 2020. SAVIOR: Securing Autonomous Vehicles with Robust

Physical Invariants. In Proc. of the USENIX Security Symposium. Boston, MA.

https://www.usenix.org/conference/usenixsecurity20/presentation/quinonez

[46] R. Taormina. 2018. AutoEncoders for Event Detection (AEED): a Keras-based

class for anomaly detection in water sensor networks. (2018). https://github.

com/rtaormina/aeed, Last accessed on: 2020-06-15.

[47] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter. 2016.

Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recog-

nition. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’16). ACM, 1528–1540. https://doi.org/10.1145/

2976749.2978392

[48] Junjie Shen, Jun Yeon Won, Shinan Liu, Qi Alfred Chen, and Alexander Veiden-

baum. 2020. Poster: Security Analysis of Multi-Sensor Fusion based Localization

in Autonomous Vehicles. (2020).

[49] Octavian Suciu, Radu Marginean, Yigitcan Kaya, Hal Daume III, and Tudor

Dumitras. 2018. When Does Machine Learning FAIL? Generalized Transferability

for Evasion and Poisoning Attacks. In 27th USENIX Security Symposium (USENIX
Security 18). 1299–1316.

[50] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian J. Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.

CoRR abs/1312.6199 (2013). arXiv:1312.6199

[51] Riccardo Taormina and Stefano Galelli. 2018. A Deep Learning approach for the

detection and localization of cyber-physical attacks on water distribution systems.

Journal of Water Resources Planning Management 144, 10 (2018), 04018065. https:
//doi.org/10.1061/(ASCE)WR.1943-5452.0000983

[52] R. Taormina, S. Galelli, H.C. Douglas, N. O. Tippenhauer, E. Salomons, and A.

Ostfeld. 2019. A toolbox for assessing the impacts of cyber-physical attacks on

water distribution systems. Environmental Modelling Software. Environmental
Modelling Software 112 (02 2019), 46–51. https://doi.org/10.1016/j.envsoft.2018.11.
008

[53] Riccardo Taormina, Stefano Galelli, Nils Ole Tippenhauer, Elad Salomons, Avi

Ostfeld, Demetrios G. Eliades, Mohsen Aghashahi, Raanju Sundararajan, Mohsen

Pourahmadi, M. Katherine Banks, B. M. Brentan, Enrique Campbell, G. Lima, D.

Manzi, D. Ayala-Cabrera, M. Herrera, I. Montalvo, J. Izquierdo, E. Luvizotto, Jr,

Sarin E. Chandy, Amin Rasekh, Zachary A. Barker, Bruce Campbell, M. Ehsan

Shafiee, Marcio Giacomoni, Nikolaos Gatsis, Ahmad Taha, Ahmed A. Abokifa,

Kelsey Haddad, Cynthia S. Lo, Pratim Biswas, Bijay Pasha, M. Fayzul K.and Kc,

Saravanakumar Lakshmanan Somasundaram, Mashor Housh, and Ziv Ohar.

2018. The Battle Of The Attack Detection Algorithms: Disclosing Cyber Attacks

On Water Distribution Networks. Journal of Water Resources Planning and
Management 144, 8 (Aug. 2018). https://doi.org/10.1061/(ASCE)WR.1943-5452.

0000969

[54] André Teixeira, Iman Shames, Henrik Sandberg, and Karl H Johansson. 2012.

Revealing stealthy attacks in control systems. In Proceedings of Annual Allerton
Conference on Communication, Control, and Computing (Allerton). IEEE, 1806–
1813.

[55] Throwing Star LANTap [n. d.]. Throwing Star LANTap. https://greatscottgadgets.

com/throwingstar/. ([n. d.]).

[56] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.

2016. Stealing Machine Learning Models via Prediction APIs.. In USENIX Security
Symposium. 601–618.

[57] David Urbina, Jairo Giraldo, Alvaro A. Cardenas, Nils Ole Tippenhauer, Junia

Valente, Mustafa Faisal, Justin Ruths, Richard Candell, and Henrik Sandberg.

2016. Limiting The Impact of Stealthy Attacks on Industrial Control Systems. In

Proceedings of the ACM Conference on Computer and Communications Security
(CCS). https://doi.org/10.1145/2976749.2978388

[58] Nedim Šrndić and Pavel Laskov. 2014. Practical Evasion of a Learning-Based

Classifier: A Case Study. In Proceedings of IEEE Symposium on Security and Privacy.
197–211. https://doi.org/10.1109/SP.2014.20

[59] Sharon Weinberger. 2011. Computer security: Is this the start of cyberwarfare?

Nature 174 (June 2011), 142–145.
[60] Chathurika S Wickramasinghe, Daniel L Marino, Kasun Amarasinghe, and Milos

Manic. 2018. Generalization of Deep Learning for Cyber-Physical System Security:

A Survey. In IECON 2018-44th Annual Conference of the IEEE Industrial Electronics
Society. IEEE, 745–751.

[61] Weilin Xu, Yanjun Qi, and David Evans. 2016. Automatically evading classifiers.

In Proceedings of the Network and Distributed Systems Symposium.

[62] Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang, Taimin Zhang, and

Wenyuan Xu. 2017. DolphinAttack: Inaudible voice commands. In Proceedings of
the ACM SIGSAC Conference on Computer and Communications Security (CCS).
ACM, 103–117.

A DETAILS OF ITERATIVE ATTACK
The attacker essentially has access to an oracle of the Deep Archi-

tecture, where the attacker can provide arbitrary ®x features and

gets the individual values of the reconstruction error vector ®e . The

https://doi.org/10.1145/2664243.2664277
https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/
https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/
https://keras.io/api/callbacks/early_stopping
https://keras.io/api/callbacks/early_stopping
https://keras.io/api/callbacks/reduce_lr_on_plateau/
https://keras.io/api/callbacks/reduce_lr_on_plateau/
https://doi.org/10.1145/2714576.2714599
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1109/EuroSP.2016.36
https://doi.org/10.1109/EuroSP.2016.36
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1109/SP.2016.41
https://www.usenix.org/conference/usenixsecurity20/presentation/quinonez
https://github.com/rtaormina/aeed
https://github.com/rtaormina/aeed
https://doi.org/10.1145/2976749.2978392
https://doi.org/10.1145/2976749.2978392
https://arxiv.org/abs/1312.6199
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000983
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000983
https://doi.org/10.1016/j.envsoft.2018.11.008
https://doi.org/10.1016/j.envsoft.2018.11.008
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000969
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000969
https://greatscottgadgets.com/throwingstar/
https://greatscottgadgets.com/throwingstar/
https://doi.org/10.1145/2976749.2978388
https://doi.org/10.1109/SP.2014.20

ACSAC 2020, December 7–11, 2020, Austin, USA A. Erba et al.

attacker then computes maxi ®e and finds the sensor reading ri with

the highest reconstruction error from ®x . In order to satisfy ε(®e ′) < θ ,
the attacker attempts to decrease the reconstruction error di error
by changing ri . Sensor readings ri are modified in the range of nor-

mal operating values; this guides the computation to a solution that

is consistent with the physical process learned by the detector. For

example, if normal operations of sensor ri are in the range [0, 5], the
attacker tries to substitute the corresponding value of ri according
to its range to see if the related reconstruction error decreases. This

results in ®x ′ = [r1, . . . , r
′
i , . . . , rn], where d

′
i < di and, accordingly,

ε(®e ′) < ε(®e). Algorithm 1 is the pseudo-code applied to compute

sensor readings modifications.

In order to find the value of ri that decreases ε(®e) the most, we

can introduce X as the matrix containing the mutations of ®x w.r.t.

ri .

X =


r1 . . . r1

i ... rn
r1 . . . r2

i ... rn
...
. . .

...
. . .

...

r1 . . . rmi ... rn


were rki ∈ normal operations values for senor i. Among the all mu-

tations, we select the one that generates the lower reconstruction

error ε(®e). After choosing the best value over the variable ri the
algorithm repeats until a solution with average reconstruction error

lower than θ is found.

Two stopping criteria are put in place: patience and budget. It
could happen that no lower reconstruction errors di are found by

changing the value of a chosen reading ri . In this case, we try to

change the other readings in descending order of reconstruction

error. patience mechanism is put in place to avoid wasting of com-

putation. If no improved solutions are found in patience iterations,
the input is no more optimized.

According to the communication mechanism between PLCs and

SCADA, the attacker may be constrained to send the data in a

certain amount of time. budget is the maximum amount of times

that loop at Line 8 (Algorithm 1) can be performed. After budget
attempts without finding a set of modified readings that satisfies

ε(®e ′) < θ , the input is no more optimized, and no solution is found.

Exiting the loop at Line 8 due to a stopping criterion is not

providing a misclassified example. Even though a solution such

that ε(®e ′) < θ is not found, the resulting tuple is likely to have a

lower ε(®e), i.e., ε(®e) > ε(®e ′) > θ .

B DEFINITION OF CONSTRAINTS
In order to study the impact of this best-case constraints, we selected

k features for every attack that can be modified. Then we studied

how replay, iterative, and learning based attacks perform when

these constraint are applied. We defined the constrains as follows:

starting from the results of iterative and learning based attacks we

determined the k features that were changed most frequently (over

the course of each attack). The intuition behind this is as follows:

features that are modified most often in the unconstrained case

are assumed to have the highest impact on the performance of the

attack. We are assuming a best case scenario for the attacker, in

which she was able to choose the k our of n features to maximise

her efficiency. Then, we created 11 sets of k features that can be

Algorithm 1 White Box concealment attack

1: procedure Conceal(®x)
2: c ← 0 ▷ number of changes

3: i ← 0 ▷ last optimization

4: solved ← False
5: ®e ← compute_reconstruction_errors(®x)
6: previous_best_error ← ε(®e) ▷ access oracle

7: ®e ← sort_descending(®e)
8: while !(solved) && (c − i) < patience && c < budдet do
9: f ← choose_feature_to_optimize (®e)
10: X ← compute_matrix_of_mutations(®x , f)
11: x ′, ®e ′ ←find_best_mutation(®X)
12: if ε(®e ′) < previous_best_error then
13: previous_best_error ← ε(®e ′)
14: new_best← ®x ′

15: else
16: i ← c
17: end if
18: if ε(®e ′) < θ then
19: solved ← True
20: end if
21: c ← c + 1

22: ®e ←sort_descending(®e ′)
23: end while
24: return new_best
25: end procedure

modified by the attacker (with different counts k of features to be

manipulated, with the maximal number determined by the dataset

used). In the case of iterative and learning based attack, we limited

the adversarial example exploration to the k features extracted for

the considered approach. Effectively, that implies that we only used

the allowed k features out of the learning based model, while the

iterative model was able to learn modifications to the k allowed

features that would minimize the detector accuracy. In the case

of replay attack we applied the same replay strategy introduced

before but we replayed only the selected k features extracted from

the iterative approach. We note that this choice (replay the features

extracted from the iterative approach) was made to reflect worst

case scenario, i.e., an attacker that is able to replay exactly the k
features that an iterative attacker would replay.

C LEARNING BASED ATTACK: IMPACT OF D
DIMENSION

Another aspect that we investigated is the impact of
ˆD on the ap-

plicability of learning based attack. Especially, we are interested

in understanding how much normal operational data the attacker

needs to conduct the proposed learning based attack. We investi-

gated the impact of less available normal data (i.e., a fraction of
ˆD)

on the achieved reduction in detection Recall for the learning based

attacker. We performed a sensitivity analysis by random sampling

normal operations data 10 times for each one of the considered per-

centages of data. Then, we trained an adversarial network for each

sampling of the data percentage (50 adversarial networks trained

for each dataset). As result we computed the sample mean (µx̄) and

Constrained Concealment Attacks against Reconstruction-based detectors in ICS ACSAC 2020, December 7–11, 2020, Austin, USA

0 100 200 300 400 500 600
Time [s]

0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

R
e
co

n
st

ru
ct

io
n
 e

rr
o
r

(e) original (e) white box (e) black box

Figure 4: Comparison of concealment results. While the Re-
call after concealment in bothwhite and learning based goes
to 0, we can see how the two approaches are behaving dif-
ferently. We plot the average reconstruction error over time
(ε(®e)) and the threshold θ .

sample standard deviation (σx̄) of the resulted detection Recall by

using the different learning based networks.

For BATADAL, the resulting mean detection Recall ranges from

0.14 for 100% of
ˆD available for AE training to 0.22 for 5% of

ˆD

available. For WADI, the resulting mean detection Recall ranges

from 0.31 for 100% of
ˆD available for AE training to 0.50 for 5% of

ˆD available (compared to 0.68 without concealment). Results over

BATADAL dataset show, performance of the attacker’s adversarial

network is performing almost the same if trained with 100% to

25% of data. Lower than 25% of the data we notice substantial

performance degradation. Looking at standard deviation, we notice

that less data (10%. 5%) causes high model variance. To perform the

learning based attack the attacker needs 25% of data to guarantee

evasion success.

In the case of WADI dataset performance of the adversarial

network increases diminishing the number of data available to the

attacker, this means that with less data the attacker’s Autoencoder

generalizes better. WADI water distribution network is small and

the three stage are repetitive. Information contained in 5% of the

data (16 hours of recordings) could be enough to model the system

behavior.

D DISCUSSION
We showed that replay attacks (while not requiring machine learn-

ing algorithms) is only efficient when all sensor readings replayed.

Thus, replay attacks do not represent a viable solution for hiding

anomalies when the attacker can act on a limited set of sensor read-

ings. In particular, replay attacks introduce contextual anomalies

since sensor readings will not be consistent any longer.

We now discuss the quality of results coming from the proposed

approaches. Figure 4, represents the comparison between trend of

ε(®e) wrt. the threshold θ during the whole actuators’ manipulation

done in one attack from WADI dataset. Comparing the white and

learning based ε(®e) results, we notice that the solution provided

by the iterative algorithm is closer to θ than the learning based

solution. This is because the iterative algorithm is looking at θ
value to decide whether to stop the computation. Black box is

not performing any optimization wrt. the attacked detector, so

it is providing a solution that is matching the learned physical

behavior, and what the detector expects from a non-anomalous

sample. After second 200, the magenta line shows that the ε(®e) is
around 0, meaning that we are sending inputs that are in line with

the detector expected behavior.

ACSAC 2020, December 7–11, 2020, Austin, USA A. Erba et al.

Table 6: Impact of fraction of ˆD on concealing capacity.

Recall for Black Box % of
ˆD

Original 100% 75% 50% 25% 10% 5%

Data Recall µx̄ σx̄ µx̄ σx̄ µx̄ σx̄ µx̄ σx̄ µx̄ σx̄

B 0.60 0.14 0.15 0.02 0.15 0.02 0.16 0.03 0.25 0.09 0.22 0.09

W 0.68 0.31 0.27 0.06 0.26 0.01 0.24 0.03 0.24 0.04 0.24 0.06

Table 7: Impact of PartiallyConstrained attacker (best-case scenario and topology based scenario). By decreasing the number of
features that the attacker can control, we notice that replay attack performance decreases drastically. This is due to contextual
anomalies introduced as part of large-scale replay, while both black and iterative approaches avoid this problem.

Original Recall vs. # of Controlled sensors k (43 features BATADAL) Topology

Data Recall Experiment 43 40 35 30 25 20 15 10 9 8 7 6 5 4 3 2 1 PLC

B 0.60

replay 0 0.25 0.69 0.83 0.94 0.93 0.9 0.78 0.69 0.79 0.77 0.77 0.71 0.68 0.78 0.73 0.36

iterative 0.14 0.17 0.17 0.15 0.16 0.22 0.22 0.22 0.22 0.25 0.25 0.25 0.27 0.35 0.51 0.52 0.34

learning 0.14 0.16 0.35 0.37 0.37 0.38 0.38 0.35 0.35 0.24 0.27 0.32 0.34 0.49 0.56 0.55 0.34

Original Recall vs. # of Controlled sensors k (82 features WADI) Topology

Data Recall Experiment 82 80 70 60 50 40 30 20 15 10 9 8 7 6 5 4 3 2 1 PLC

W 0.68

replay 0.07 0.15 0.55 0.7 0.74 0.79 0.89 0.87 0.85 0.65 0.64 0.62 0.62 0.62 0.6 0.44 0.4 0.49 0.64

iterative 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.09 0.12 0.12 0.12 0.12 0.12 0.14 0.25 0.12

learning 0.31 0.31 0.31 0.4 0.4 0.4 0.45 0.41 0.41 0.32 0.36 0.36 0.36 0.34 0.27 0.27 0.27 0.29 0.36

Table 8: Generizability of Learning based attack. Attack to LSTM and CNN based defenses on BATADAL dataset.

Original Recall vs. # of Controlled sensors k (43 features BATADAL)

Data Recall Experiment 43 40 35 30 25 20 15 10 9 8 7 6 5 4 3 2

LSTM 0.63

replay 0 0.26 0.65 0.72 0.89 0.9 0.86 0.74 0.65 0.74 0.71 0.74 0.68 0.63 0.75 0.69

learning 0.12 0.14 0.34 0.35 0.35 0.34 0.34 0.29 0.3 0.2 0.22 0.27 0.29 0.38 0.48 0.49

CNN 0.67

replay 0 0.32 0.74 0.89 0.96 0.96 0.95 0.89 0.83 0.91 0.89 0.89 0.82 0.77 0.87 0.81

learning 0.18 0.2 0.39 0.39 0.39 0.39 0.4 0.38 0.39 0.35 0.4 0.48 0.5 0.5 0.57 0.56

	Abstract
	1 Introduction
	2 Background
	2.1 Industrial Control Systems
	2.2 Evasion Attacks

	3 Concealment Attacks on Reconstruction-based Anomaly Detection
	3.1 System Model
	3.2 Attacker Model
	3.3 Example Constraint Scenarios
	3.4 Our Framework for Attack Computation

	4 Design of Concealment Attacks
	4.1 Background: Reconstruction-based Attack Detector
	4.2 Baseline: Replay Attack
	4.3 Iterative Attack
	4.4 Learning Based attack
	4.5 Positioning with respect to State-of-The-Art AML attacks

	5 Evaluation
	5.1 Dataset 1: BATADAL
	5.2 Dataset 2: WADI
	5.3 Evaluation Setup
	5.4 Unconstrained Concealment Attack
	5.5 Constrained Concealment Attack
	5.6 Generalizability of Learning Based Attack
	5.7 Real-time Concealment Attacks

	6 Related Work
	7 Conclusions
	Acknowledgments
	References
	A Details of Iterative attack
	B Definition of Constraints
	C Learning Based attack: impact of D dimension
	D Discussion

