761 research outputs found

    Condensates of p-wave pairs are exact solutions for rotating two-component Bose gases

    Full text link
    We derive exact analytical results for the wave functions and energies of harmonically trapped two-component Bose-Einstein condensates with weakly repulsive interactions under rotation. The isospin symmetric wave functions are universal and do not depend on the matrix elements of the two-body interaction. The comparison with the results from numerical diagonalization shows that the ground state and low-lying excitations consists of condensates of p-wave pairs for repulsive contact interactions, Coulomb interactions, and the repulsive interactions between aligned dipoles.Comment: 4 pages, 1 figure; revised version explains exact solutions in terms of isospin symmetry and Hund's rul

    Density-functional theory for fermions in the unitary regime

    Full text link
    In the unitary regime, fermions interact strongly via two-body potentials that exhibit a zero range and a (negative) infinite scattering length. The energy density is proportional to the free Fermi gas with a proportionality constant Îľ\xi. We use a simple density functional parametrized by an effective mass and the universal constant Îľ\xi, and employ Kohn-Sham density-functional theory to obtain the parameters from fit to one exactly solvable two-body problem. This yields Îľ=0.42\xi=0.42 and a rather large effective mass. Our approach is checked by similar Kohn-Sham calculations for the exactly solvable Calogero model.Comment: 5 pages, 2 figure

    Medium-mass nuclei from chiral nucleon-nucleon interactions

    Full text link
    We compute the binding energies, radii, and densities for selected medium-mass nuclei within coupled-cluster theory and employ the "bare" chiral nucleon-nucleon interaction at order N3LO. We find rather well-converged results in model spaces consisting of 15 oscillator shells, and the doubly magic nuclei 40Ca, 48Ca, and the exotic 48Ni are underbound by about 1 MeV per nucleon within the CCSD approximation. The binding-energy difference between the mirror nuclei 48Ca and 48Ni is close to theoretical mass table evaluations. Our computation of the one-body density matrices and the corresponding natural orbitals and occupation numbers provides a first step to a microscopic foundation of the nuclear shell model.Comment: 5 pages, 5 figure

    Complex coupled-cluster approach to an ab-initio description of open quantum systems

    Get PDF
    We develop ab-initio coupled-cluster theory to describe resonant and weakly bound states along the neutron drip line. We compute the ground states of the helium chain 3-10He within coupled-cluster theory in singles and doubles (CCSD) approximation. We employ a spherical Gamow-Hartree-Fock basis generated from the low-momentum N3LO nucleon-nucleon interaction. This basis treats bound, resonant, and continuum states on equal footing, and is therefore optimal for the description of properties of drip line nuclei where continuum features play an essential role. Within this formalism, we present an ab-initio calculation of energies and decay widths of unstable nuclei starting from realistic interactions.Comment: 4 pages, revtex

    Comment on "Ab Initio study of 40-Ca with an importance-truncated no-core shell model"

    Full text link
    In a recent Letter [Phys. Rev. Lett. 99, 092501 (2007)], Roth and Navratil present an importance-truncation scheme for the no-core shell model. The authors claim that their truncation scheme leads to converged results for the ground state of 40-Ca. We believe that this conclusion cannot be drawn from the results presented in the Letter. Furthermore, the claimed convergence is at variance with expectations of many-body theory. In particular, coupled-cluster calculations indicate that a significant fraction of the correlation energy is missing.Comment: 1 page, comment on arXiv:0705.4069 (PRL 99, 092501 (2007)

    Bremsstrahlung Spectrum in alpha Decay

    Full text link
    Using our previous approach to electromagnetic emission during tunneling, an explicit, essentially classical, formula describing the bremsstrahlung spectrum in alpha decay is derived. The role of tunneling motion in photon emission is discussed. The shape of the spectrum is a universal function of the ratio Eg/Eo , where Eg is the photon energy and Eo is a characteristic energy depending only on the nuclear charge and the energy of the alpha particle.Comment: 8 pages, 3 figure

    Enzymatic activity of the Arabidopsis sulfurtransferase resides in the C-terminal domain but is boosted by the N-terminal domain and the linker peptide in the full-length enzyme

    Get PDF
    Sulfurtransferases/rhodaneses are a group of enzymes widely distributed in plants, animals, and bacteria that catalyze the transfer of sulfur from a donor molecule to a thiophilic acceptor substrate. Sulfurtransferases (STs) consist of two globular domains of nearly identical size and conformation connected by a short linker sequence. In plant STs this linker sequence is exceptionally longer than in sequences from other species. The Arabidopsis ST1 protein (AJ131404) contains five cysteine residues: one residue is universally conserved in all STs and considered to be catalytically essential; a second one, closely located in the primary sequence, is conserved only in sequences from eukaryotic species. Of the remaining three cysteine residues two are conserved in the so far known plant STs and one is unique to the Arabidopsis ST1. The aim of our study was to investigate the role of the twodomain structure, of the unique plant linker sequence and of each cysteine residue. The N and C-terminal domains of the Arabidopsis ST1, the fulllength protein with a shortened linker sequence and several pointmutated proteins were overexpressed in E. coli, purified and used for enzyme activity measurements. The C-terminal domain itself displayed ST activity which could be increased by adding the separately prepared N-terminal domain. The activity of an ST1 derivative with a shortened linker sequence was reduced by more than 60% of the wild-type activity, probably because of a drastically reduced protein stability. The replacement of each cysteine residue resulted in mutant forms which differed significantly in their stability, in the specific ST activities, and in their kinetic parameters which were determined for 3-mercaptopyruvate as well as thiosulfate as sulfur substrates: mutation of the putative active site cysteine (C332) essentially abolished activity; for C339 a crucial role at least for the turnover of thiosulfate could be identified.DFG/PA/764/1-1DFG/PA/764/1-2Fonds der Chemischen Industri
    • …
    corecore