132 research outputs found

    Highlights in Seagrasses’ Phylogeny, Physiology, and Metabolism: What Makes Them Special?

    Get PDF
    The marine seagrasses form an ecological and therefore paraphyletic group of marine hydrophilus angiosperms which evolved three to four times from land plants towards an aquatic and marine existence. Their taxonomy is not yet solved on the species level and below due to their reduced morphology. So far also molecular data did not completely solve the phylogenetic relationships. Thus, this group challenges a new definition for what a species is. Also their physiology is not well understood due to difficult experimental in situ and in vitro conditions. There remain several open questions concerning how seagrasses adapted secondarily to the marine environment. Here probably exciting adaptation solutions will be detected. Physiological adaptations seem to be more important than morphological ones. Seagrasses contain several compounds in their secondary metabolism in which they differ from terrestrial plants and also not known from other taxonomic groups. Some of these compounds might be of interest for commercial purposes. Therefore their metabolite contents constitute another treasure of the ocean. This paper gives an introduction into some of the most interesting aspects from phylogenetical, physiological, and metabolic points of view.DAA

    Evidence-Based Optimization of Classroom Teaching Units Using 3D Printers for Designing Models—From the 2D Picture to the 3D Flower Model

    Get PDF
    The implementation of digital tools into science education is a major demand of various stakeholders, such as teachers, schools and ministries of education. However, teaching innovations and the introduction of new competences need to be carefully tested and optimized for successful and sustainable application and learning success. Our aim was to develop and establish an easily adaptable teaching unit comprising the aspects of 3D printing from computer-aided modeling to slicing, printing and post-processing, which is linked to curricular learning content. The original teaching concept developed with a small group of students has been adapted to the conditions in large groups and full-size 9th grade school classes. With an increased sample size, it was now possible to investigate and analyze the teaching approach with respect to student’s motivation, learning success as well as the quality and acceptance of the teaching–learning arrangement for designing and 3D printing flower models. The goal of the study was to further optimize the existing teaching tool based on the evaluation of the student experience. While the exploration of this teaching approach ties into the current discourse of innovative biology teaching, the efficacy is evidenced by results that indicate a positive impact on student’s motivation and a high learning success regarding computer-aided modeling and 3D printing. As a result, the teaching-revised concept reported in this article is based on the students’ evaluation and can be provided as well-tested teaching material for schools

    Comparative analysis of methods analyzing effects of drought on the herbaceous plant Lablab purpureus

    Get PDF
    Due to the changing climatic conditions, there is an enlargement of land areas with insufficient rainfall and therefore a reduction in the cultivated area for common crops. Hence, it is now important to find plants that are adapted to these drought conditions. The focus of our research was to apply and compare different methods to quantify the impact of drought stress on plants.Lablab purpureus is considered to be drought tolerant. Therefore, we used L. purpureus genotypes from three continents CPI 36903 (Europe), CPI 52508 (Africa) and HA-4 (Asia) as examples for our study. All genotypes were screened for their tolerance to drought stress by various methods to obtain quantitative data on the drought stress tolerance of individual genotypes and to find out which methods are especially suitable for the measurement of drought tolerance. Classical methods such as leaf size, plant height, biomass, and plant water content were investigated. In addition, by chlorophyll fluorescence measurement effects of drought on the photosynthetic system were examined. Infrared thermography was used in order to make the changes in leaf temperature in plants stressed by drought compared to unstressed plants visible. The methods were complemented by the measurement of leaf conductivity.Results indicate a difference in the usability of the methods for the determination of drought stress. Finally, a set of methods is assembled based on suitability for drought tolerance analysis in plants. The methods include classical growth parameters, including dry weight biomass, PWC and leaf area determination, as well as height measurements of the plants. The stomata behavior is analyzed by leaf conductivity and infrared thermography, both methods complete the set for drought tolerance identification.Based on the results of these methods a ranking of the examined genotypes with respect to their drought tolerance is created

    An Overview of Soil and Soilless Cultivation Techniques—Chances, Challenges and the Neglected Question of Sustainability

    Get PDF
    Resources such as fertile soil and clean water are already limited in many parts of the world. Additionally, the conventional use of arable land is becoming increasingly difficult, which is further exacerbated by climate change. Soilless cultivation systems do not only offer the opportunity to save water and cultivate without soil but also the chance to open up urban areas such as residential rooftops for food production in close proximity to consumers. In this review, applications of soilless farming systems are identified and compared to conventional agriculture. Furthermore, aspects of economic viability, sustainability and current developments are investigated. An insight into the most important soilless farming systems—hydroponics, aquaponics and vertical farming—is provided. The systems are then differentiated from each other and, as far as possible, evaluated in terms of their environmental impact and compared with conventional cultivation methods. Comparing published data analyzing the yield of hydroponic cultivation systems in comparison to soil-based cultivation methods enables a basic overview of the profitability of both methods and, thus, lays the foundation for future research and practical applications. The most important inert substrates for hydroponic applications are presented, and their degree of sustainability is compared in order to emphasize environmental impacts and affect substrate selections of future projects. Based on an assessment of the most important soilless cultivation systems, the challenges and developments of current techniques are highlighted and discussed

    Sustainable Treatment of Aquaculture Effluents – What Can We Learn from the Past for the Future?

    Get PDF
    Many aquaculture systems generate high amounts of wastewater containing compounds such as suspended solids, total nitrogen and total phosphorus. Today, aquaculture is imperative because fish demand is increasing. However, the load of waste is directly proportional to the fish production. Therefore, it is necessary to develop more intensive fish culture with efficient systems for wastewater treatment. A number of physical, chemical and biological methods used in conventional wastewater treatment have been applied in aquaculture systems. Constructed wetlands technology is becoming more and more important in recirculating aquaculture systems (RAS) because wetlands have proven to be well-established and a cost-effective method for treating wastewater. This review gives an overview about possibilities to avoid the pollution of water resources; it focuses initially on the use of systems combining aquaculture and plants with a historical review of aquaculture and the treatment of its effluents. It discusses the present state, taking into account the load of pollutants in wastewater such as nitrates and phosphates, and finishes with recommendations to prevent or at least reduce the pollution of water resources in the future.DAA

    Thioredoxin Is a New Target for the Phytotoxicity of Small Lactone Mycotoxins, Patulin and Penicillic Acid on Maize Seedlings

    Get PDF
    The phytotoxic mechanisms of patulin (PAT) and penicillic acid (PA) have not been identified unambiguously. This study aims to clarify their effects on thioredoxins (Trxs). Aflatoxin B1 (AFB1), PAT and PA were isolated by solvent extraction and chromatographic techniques from the cultures of Aspergillus flavus Z2 (LC171449), Penicillium vulpinum CM1 and Aspergillus ochraceus EMCC516, respectively. The three mycotoxins showed phytotoxicity to the germination of maize seeds, which was manifested by inhibiting radicle and coleoptile emergence, in addition to their toxic effects on fresh weights and root and shoot lengths. The phytotoxicity of AFB1 and PAT was greater than that of PA. Due to the central roles exhibited by plant Trxs in cellular metabolic activities, they were tested as target proteins for PAT and PA using AFB1 as positive control. In vivo studies showed that the mycotoxins significantly reduced Trx activity measured in the roots and shoots of maize seedlings. PAT showed greater Trx-inhibiting activity than PA and AFB1. In vitro studies of the mycotoxins on Trx y1 (from Arabidopsis thaliana) and thioredoxin reductase (Tr, from rat liver) activities confirm the results of in vivo studies. The inactivation of Trx with PAT and PA was reduced in the presence of glutathione (GSH). Data obtained suggest that lactone mycotoxins are more highly reactive with simple low-molecular-weight thiols (like GSH) than with complex ones (like Trx)

    Quantification and fatty acid profiles of sulfolipids in two halophytes and a glycophyte grown under different salt concentrations

    Get PDF
    This study was aimed at understanding the role of sulfolipids in salt tolerance mechanisms of the halophytes Aster tripolium L., Compositae, and Sesuvium portulacastrum L., Aizoaceae, and of the glycophyte Arabidopsis thaliana (L.) Heynh., Brassicaceae. In Aster and Sesuvium the sulfolipid contents increased significantly under salt stress conditions (517 mM or 864 mM). In Arabidopsis, changes in sulfolipid contents were not observed (NaCl up to 100 mM). The fatty acid profile of sulfoquinovosyldiacylglycerol (SQDG) in Aster was modified with increasing NaCl concentrations. LC-MS analyses of sulfolipids from Aster and Sesuvium revealed the presence of 18:3/18:3 and 16:0/18:3 molecules. Obviously, the function of sulfolipids during salt stress differs between halophytic species and between halophytes and glycophytes where sulfolipid accumulation was not observed

    Random amplified polymorphic DNA (RAPD) finger prints evidencing high genetic variability among marine angiosperms of India

    Get PDF
    In India 14 seagrass species can be found with monospecific genera (Enhalus, Thalassia and Syringodium), Cymodocea with two species and Halophila and Halodule represented by more than two taxonomically complex species. Considering this, the present study was made to understand the level and pattern of genetic variability among these species collected from Tamilnadu coast, India. Random amplified polymorphic DNA (RAPD) analysis was used to evaluate the level of polymorphism existing between the species. Out of the 12 primers tested, 10 primers amplified 415 DNA fragments with an average of 41.5 fragments per primer. Of the total 415 amplified fragments only 123 (29.7%) were monomorphic and the remaining 292 (70.3%) were polymorphic for Indian seagrass species. Among the 10 primers used four are identified as the key primers capable of distinguishing all the Indian seagrasses with a high degree of polymorphism and bringing representative polymorphic alleles in all the tested seagrasses. From the present investigation, this study shows that the RAPD marker technique can be used not only as a tool to analyse genetic diversity but also to resolve the taxonomic uncertainties existing in the Indian seagrasses. The efficiency of these primers in bringing out the genetic polymorphism or homogeneity among different populations of the Halophila and Halodule complex still has to be tested before recommending these primers as an identification tool for Indian seagrasses. Copyright © Marine Biological Association of the United Kingdom 201

    The multi-protein family of sulfotransferases in plants: composition, occurrence, substrate specificity, and functions

    Get PDF
    All members of the sulfotransferase (SOT, EC 2.8.2.-) protein family transfer a sulfuryl group from the donor 3’-phosphoadenosine 5’-phosphosulfate (PAPS) to an appropriate hydroxyl group of several classes of substrates. The primary structure of these enzymes is characterized by a histidine residue in the active site, defined PAPS binding sites and a longer SOT domain. Proteins with this SOT domain occur in all organisms from all three domains, usually as a multi-protein family. Arabidopsis thaliana SOTs, the best characterized SOT multi-protein family, contains 21 members. The substrates for several plant enzymes have already been identified, such as glucosinolates, brassinosteroids, jasmonates, flavonoids, and salicylic acid. Much information has been gathered on desulfoglucosinolate (dsGl) SOTs in A. thaliana. The three cytosolic dsGI SOTs show slightly different expression patterns. The recombinant proteins reveal differences in their affinity to indolic and aliphatic dsGls. Also the respective recombinant dsGl SOTs from different A. thaliana ecotypes differ in their kinetic properties. However, determinants of substrate specificity and the exact reaction mechanism still need to be clarified. Probably, the three-dimensional structures of more plant proteins need to be solved to analyze the mode of action and the responsible amino acids for substrate binding. In addition to A. thaliana, more plant species from several families need to be investigated to fully elucidate the diversity of sulfated molecules and the way of biosynthesis catalyzed by SOT enzymes.DFG/PA/764/10-

    Enzymatic activity of the Arabidopsis sulfurtransferase resides in the C-terminal domain but is boosted by the N-terminal domain and the linker peptide in the full-length enzyme

    Get PDF
    Sulfurtransferases/rhodaneses are a group of enzymes widely distributed in plants, animals, and bacteria that catalyze the transfer of sulfur from a donor molecule to a thiophilic acceptor substrate. Sulfurtransferases (STs) consist of two globular domains of nearly identical size and conformation connected by a short linker sequence. In plant STs this linker sequence is exceptionally longer than in sequences from other species. The Arabidopsis ST1 protein (AJ131404) contains five cysteine residues: one residue is universally conserved in all STs and considered to be catalytically essential; a second one, closely located in the primary sequence, is conserved only in sequences from eukaryotic species. Of the remaining three cysteine residues two are conserved in the so far known plant STs and one is unique to the Arabidopsis ST1. The aim of our study was to investigate the role of the twodomain structure, of the unique plant linker sequence and of each cysteine residue. The N and C-terminal domains of the Arabidopsis ST1, the fulllength protein with a shortened linker sequence and several pointmutated proteins were overexpressed in E. coli, purified and used for enzyme activity measurements. The C-terminal domain itself displayed ST activity which could be increased by adding the separately prepared N-terminal domain. The activity of an ST1 derivative with a shortened linker sequence was reduced by more than 60% of the wild-type activity, probably because of a drastically reduced protein stability. The replacement of each cysteine residue resulted in mutant forms which differed significantly in their stability, in the specific ST activities, and in their kinetic parameters which were determined for 3-mercaptopyruvate as well as thiosulfate as sulfur substrates: mutation of the putative active site cysteine (C332) essentially abolished activity; for C339 a crucial role at least for the turnover of thiosulfate could be identified.DFG/PA/764/1-1DFG/PA/764/1-2Fonds der Chemischen Industri
    • …
    corecore