107 research outputs found

    The Activation-induced Deaminase Functions in a Postcleavage Step of the Somatic Hypermutation Process

    Get PDF
    Activation of B cells by antigen fuels two distinct molecular modifications of immunoglobulin (Ig) genes. Class-switch recombination (CSR) replaces the Igμ heavy chain constant region with a downstream constant region gene, thereby altering the effector function of the resulting antibodies. Somatic hypermutation (SHM) introduces point mutations into the variable regions of Ig genes, thereby changing the affinity of antibody for antigen. Mechanistic overlap between the two reactions has been suggested by the finding that both require the activation-induced cytidine deaminase (AID). It has been proposed that AID initiates both CSR and SHM by activating a common nuclease. Here we provide evidence that cells lacking AID, or expressing a dominant negative form of the protein, are still able to incur DNA lesions in SHM target sequences. The results indicate that an intact cytidine deaminase motif is required for AID function, and that AID acts downstream of the initial DNA lesions in SHM

    Viral induction of AID is independent of the interferon and the Toll-like receptor signaling pathways but requires NF-κB

    Get PDF
    Activation-induced cytidine deaminase (AID) is expressed in germinal centers of lymphoid organs during immunoglobulin diversification, in bone marrow B cells after infection with Abelson murine leukemia retrovirus (Ab-MLV), and in human B cells after infection by hepatitis C virus. To understand how viruses signal AID induction in the host we asked whether the AID response was abrogated in cells deficient in the interferon pathway or in signaling via the Toll-like receptors. Here we show that AID is not an interferon responsive gene and abrogation of Toll-like receptor signaling does not diminish the AID response. However, we found that NF-κB was required for expression of virally induced AID. Since NF-κB binds and activates the AID promoter, these results mechanistically link viral infection with AID transcription. Thus, induction of AID by viruses could be the result of several signaling pathways that culminate in NF-κB activation, underscoring the versatility of this host defense program

    AID Mediates Hypermutation by Deaminating Single Stranded DNA

    Get PDF
    Activation-induced deaminase (AID) is a protein indispensable for the diversification of immunoglobulin (Ig) genes by somatic hypermutation (SHM), class switch recombination (CSR), and gene conversion. To date, the precise role of AID in these processes has not been determined. Here we demonstrate that purified, tetrameric AID can deaminate cytidine residues in DNA, but not in RNA. Furthermore, we show that AID will bind and deaminate only single-stranded DNA, which implies a direct, functional link between hypermutation and transcription. Finally, AID does not target mutational hotspots, thus mutational targeting to specific residues must be attributed to different factors

    A Conserved DNA Repeat Promotes Selection of a Diverse Repertoire of Trypanosoma brucei Surface Antigens from the Genomic Archive.

    Get PDF
    African trypanosomes are mammalian pathogens that must regularly change their protein coat to survive in the host bloodstream. Chronic trypanosome infections are potentiated by their ability to access a deep genomic repertoire of Variant Surface Glycoprotein (VSG) genes and switch from the expression of one VSG to another. Switching VSG expression is largely based in DNA recombination events that result in chromosome translocations between an acceptor site, which houses the actively transcribed VSG, and a donor gene, drawn from an archive of more than 2,000 silent VSGs. One element implicated in these duplicative gene conversion events is a DNA repeat of approximately 70 bp that is found in long regions within each BES and short iterations proximal to VSGs within the silent archive. Early observations showing that 70-bp repeats can be recombination boundaries during VSG switching led to the prediction that VSG-proximal 70-bp repeats provide recombinatorial homology. Yet, this long held assumption had not been tested and no specific function for the conserved 70-bp repeats had been demonstrated. In the present study, the 70-bp repeats were genetically manipulated under conditions that induce gene conversion. In this manner, we demonstrated that 70-bp repeats promote access to archival VSGs. Synthetic repeat DNA sequences were then employed to identify the length, sequence, and directionality of repeat regions required for this activity. In addition, manipulation of the 70-bp repeats allowed us to observe a link between VSG switching and the cell cycle that had not been appreciated. Together these data provide definitive support for the long-standing hypothesis that 70-bp repeats provide recombinatorial homology during switching. Yet, the fact that silent archival VSGs are selected under these conditions suggests the 70-bp repeats also direct DNA pairing and recombination machinery away from the closest homologs (silent BESs) and toward the rest of the archive

    Functional insights from a surface antigen mRNA-bound proteome

    Get PDF
    Trypanosoma brucei is the causative agent of human sleeping sickness. The parasites' Variant Surface Glycoprotein (VSG) enables them to evade adaptive immunity via anti-genic variation. VSG comprises 10% of total cell protein and the high stability of VSG mRNA is essential for trypanosome survival. To determine how VSG mRNA stability is maintained, we used mRNA affinity purification to identify all its associated proteins. CFB2, an unconventional RNA-binding protein with an F-box domain, was specifically enriched with VSG mRNA. We demonstrate that CFB2 is essential for VSG mRNA stabil-ity, describe cis acting elements within the VSG 3'-untranslated region that regulate the interaction, identify trans-acting factors that are present in the VSG messenger ribonu-cleoprotein particle and mechanistically explain how CFB2 stabilizes the mRNA of this key pathogenicity factor. Beyond T. brucei, the mRNP purification approach has the potential to supply detailed biological insight into metabolism of relatively abundant mRNAs in any eukaryote.Fil: do Nascimento, Larissa Melo. Ruprecht Karls Universitat Heidelberg; AlemaniaFil: Egler, Franziska. Ruprecht Karls Universitat Heidelberg; AlemaniaFil: Arnold, Katharina. Ruprecht Karls Universitat Heidelberg; AlemaniaFil: Papavasiliou, Nina. Ruprecht Karls Universitat Heidelberg; Alemania. Deutsche Krebsforschungszentrum; AlemaniaFil: Clayton, Christine. Ruprecht Karls Universitat Heidelberg; AlemaniaFil: Erben, Esteban Daniel. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; Argentina. Ruprecht Karls Universitat Heidelberg; Alemania. Deutsche Krebsforschungszentrum; Alemani

    C to U editing at position 32 of the anticodon loop precedes tRNA 5′ leader removal in trypanosomatids

    Get PDF
    In all organisms, precursor tRNAs are processed into mature functional units by post-transcriptional changes. These involve 5′ and 3′ end trimming as well as the addition of a significant number of chemical modifications, including RNA editing. The only known example of non-organellar C to U editing of tRNAs occurs in trypanosomatids. In this system, editing at position 32 of the anticodon loop of tRNAThr(AGU) stimulates, but is not required for, the subsequent formation of inosine at position 34. In the present work, we expand the number of C to U edited tRNAs to include all the threonyl tRNA isoacceptors. Notably, the absence of a naturally encoded adenosine, at position 34, in two of these isoacceptors demonstrates that A to I is not required for C to U editing. We also show that C to U editing is a nuclear event while A to I is cytoplasmic, where C to U editing at position 32 occurs in the precursor tRNA prior to 5′ leader removal. Our data supports the view that C to U editing is more widespread than previously thought and is part of a stepwise process in the maturation of tRNAs in these organisms

    Inducible Germline IgMs Bridge Trypanosome Lytic Factor Assembly and Parasite Recognition

    Get PDF
    Acknowledgments This work was supported by NSF Bread award IOS-1249166 and Hunter College (J.R.); CUNY Science Scholarship (J.V.); Hunter College HHMI UGRAD Science Education grant 52007535 (E.H.); NIH/NIAID award AI085973 (N.P.); Wellcome Trust award 082786 (J.S.). We thank George Cross and Ana Rodriguez for the parasite lines and VSG preparations used in this study.Peer reviewedPostprin

    V(D)J Recombination and the Evolution of the Adaptive Immune System

    Get PDF
    In order for the immune system to generate its vast numbers of receptors, B- and T-cell receptor genes are created by recombining preexisting gene segments. This well- coordinated set of reactions is explaine

    ADAR RNA editing on antisense RNAs results in apparent U-to-C base changes on overlapping sense transcripts

    Get PDF
    Despite hundreds of RNA modifications described to date, only RNA editing results in a change in the nucleotide sequence of RNA molecules compared to the genome. In mammals, two kinds of RNA editing have been described so far, adenosine to inosine (A-to-I) and cytidine to uridine (C-to-U) editing. Recent improvements in RNA sequencing technologies have led to the discovery of a continuously growing number of editing sites. These methods are powerful but not error-free, making routine validation of newly-described editing sites necessary. During one of these validations on DDX58 mRNA, along with A-to-I RNA editing sites, we encountered putative U-to-C editing. These U-to-C edits were present in several cell lines and appeared regulated in response to specific environmental stimuli. The same findings were also observed for the human long intergenic non-coding RNA p21 (hLincRNA-p21). A more in-depth analysis revealed that putative U-to-C edits result from A-to-I editing on overlapping antisense RNAs that are transcribed from the same loci. Such editing events, occurring on overlapping genes transcribed in opposite directions, have recently been demonstrated to be immunogenic and have been linked with autoimmune and immune-related diseases. Our findings, also confirmed by deep transcriptome data, demonstrate that such loci can be recognized simply through the presence of A-to-I and U-to-C mismatches within the same locus, reflective A-to-I editing both in the sense-oriented transcript and in the cis-natural antisense transcript (cis-NAT), implying that such clusters could be a mark of functionally relevant ADAR1 editing events

    Classical Mus musculus Igκ Enhancers Support Transcription but not High Level Somatic Hypermutation from a V-Lambda Promoter in Chicken DT40 Cells

    Get PDF
    Somatic hypermutation (SHM) of immunoglobulin genes is initiated by activation-induced cytidine deaminase (AID) in activated B cells. This process is strictly dependent on transcription. Hence, cis-acting transcriptional control elements have been proposed to target SHM to immunoglobulin loci. The Mus musculus Igκ locus is regulated by the intronic enhancer (iE/MAR) and the 3′ enhancer (3′E), and multiple studies using transgenic and knock-out approaches in mice and cell lines have reported somewhat contradictory results about the function of these enhancers in AID-mediated sequence diversification. Here we show that the M. musculus iE/MAR and 3′E elements are active solely as transcriptional enhancer when placed in the context of the IGL locus in Gallus gallus DT40 cells, but they are very inefficient in targeting AID-mediated mutation events to this locus. This suggests that either key components of the cis-regulatory targeting elements reside outside the murine Igκ transcriptional enhancer sequences, or that the targeting of AID activity to Ig loci occurs by largely species-specific mechanisms
    corecore