62 research outputs found

    Commentary: Raw Cow Milk Consumption and Atopic March

    Get PDF
    We have appreciated the interest of Dr Baars et al. in our paper describing dietary prevention of atopic march (AM) in children affected by cow milk allergy (CMA) (1). They claimed a lack of information on raw cow milk (unpasteurized cow milk) in our paper. In support of this point, they mentioned the result of a pilot study involving nine CMA children (2) that were able to tolerate up to 50 mL of raw milk (about 1,750 mg of cow milk proteins). This result was not confirmed by a similar study where five children with IgE-mediated CMA were orally challenged in a double-blind fashion with raw untreated cow milk, pasteurized cow milk, and homogenized/pasteurized cow milk. An extensively hydrolysed casein formula served as placebo. All patients presented significant allergic reactions from the consumption of the above three types of milk, whereas no adverse reactions to placebo were observed. The authors concluded that children with CMA cannot tolerate raw or pasteurized milk (3). Although, selected components of raw milk may potentially influence the immune system, proof based on controlled studies in children are still lacking (4). The authors of the PARSIFAL study concluded that raw cow milk may contain numerous disease-causing pathogens and that consumption of raw milk cannot be recommended as a preventive measure for allergy (5). Accordingly, none of the claims made by the raw milk advocates (including the postulated preventive effect against allergy) withstand the FDA scientific scrutiny (6)

    Protective effects of the postbiotic deriving from cow's milk fermentation with L. paracasei CBA L74 against Rotavirus infection in human enterocytes

    Get PDF
    : Rotavirus (RV) is the leading cause of acute gastroenteritis-associated mortality in early childhood. Emerging clinical evidence suggest the efficacy of the postbiotic approach based on cow's milk fermentation with the probiotic Lacticaseibacillus paracasei CBAL74 (FM-CBAL74) in preventing pediatric acute gastroenteritis, but the mechanisms of action are still poorly characterized. We evaluated the protective action of FM-CBAL74 in an in vitro model of RV infection in human enterocytes. The number of infected cells together with the relevant aspects of RV infection were assessed: epithelial barrier damage (tight-junction proteins and transepithelial electrical resistance evaluation), and inflammation (reactive oxygen species, pro-inflammatory cytokines IL-6, IL-8 and TNF-α, and mitogen-activated protein kinase pathway activation). Pre-incubation with FM-CBA L74 resulted in an inhibition of epithelial barrier damage and inflammation mediated by mitogen-activated protein kinase pathway activation induced by RV infection. Modulating several protective mechanisms, the postbiotic FM-CBAL74 exerted a preventive action against RV infection. This approach could be a disrupting nutritional strategy against one of the most common killers for the pediatric age

    Excretion of dietary cow’s milk derived peptides into breast milk

    Get PDF
    Nanoflow-HPLC-tandem mass spectrometry (MS/MS) was used to analyze the peptide fraction of breast milk samples collected from a single non-atopic donor on different days (ten samples) after receiving an oral load of cow’s milk (by drinking 200 mL of bovine milk). In addition, breast milk was sampled from the same lactating mother over a 6-h period at 5 time points after drinking cow’s milk. We aimed to trace the intra-individual variability and to define a time profile of the excretion of dietary peptides into breast milk. Overall, 21 peptides exclusively originating from both bovine caseins and whey proteins with no match within the human milk proteome were identified in the breast milk samples. These peptides were missing in the breast milk obtained from the mother after a prolonged milk- and dairy-free diet (three samples). The time course of cow’s milk-derived β-Lg f(125-135) and β-casein f(81-92) in breast milk

    Food allergies: Novel mechanisms and therapeutic perspectives

    Get PDF
    Childhood food allergy (FA) rates have rapidly increased with significant direct medical costs for the health care system and even larger costs for the families with a food-allergic child. The possible causes of food allergy become the target of intense scrutiny in recent years. Increasing evidence underline the importance in early life of gut microbiome in the development of allergic diseases. There are a range of factors in the modern environment that may be associated with changes to both the gut microbiome and risk of FA, such as mode of delivery, antibiotic exposure, infant feeding practices, farming environment, and country of origin. Knowledge of the relationship between early life gut microbiome and allergic diseases may facilitate development of novel preventive and treatment strategies. Based on our current knowledge, there are no currently available approved therapies for food allergy. More studies are needed to evaluate the safety and efficacy of allergen-specific and allergen-nonspecific approaches, as well as combination approaches

    Body growth assessment in children with IgE-mediated cow's milk protein allergy fed with a new amino acid-based formula

    Get PDF
    Amino acid-based formula (AAF) is a relevant dietary option for non-breastfed children. The present study was designed to evaluate the body growth pattern in cow's milk protein allergy (CMPA) children treated for 6 months with a new AAF

    Excretion of Dietary Cow's Milk Derived Peptides Into Breast Milk

    Get PDF
    Nanoflow-HPLC-tandem mass spectrometry (MS/MS) was used to analyze the peptide fraction of breast milk samples collected from a single non-atopic donor on different days (10 samples) after receiving an oral load of cow's milk (by drinking 200 mL of bovine milk). In addition, breast milk was sampled from the same lactating mother over a 6-h period at five time points after drinking cow's milk. We aimed to trace the intra-individual variability and to define a time profile of the excretion of dietary peptides into breast milk. Overall, 21 peptides exclusively originating from both bovine caseins and whey proteins with no match within the human milk proteome were identified in the breast milk samples. These peptides were missing in the breast milk obtained from the mother after a prolonged milk- and dairy-free diet (three samples). The time course of cow's milk-derived β-Lg f(125–135) and β-casein f(81–92) in breast milk was determined from the MS ion intensity of the peptide signals. No intact cow's milk gene products were detected by HPLC-MS/MS analysis and Western blotting with anti-β-Lg antibody, but dot-blot analysis confirmed the occurrence of β-Lg fragments in the enriched peptide fraction of breast milk. These data suggest shifting the analytical perspective for the detection of dietary food allergens in breast milk from intact proteins to digested peptide fragments. The possible sensitization and elicitation potential or the tolerogenic properties of such low amounts of dietary peptides for the breastfed newborns remain to be explored
    • …
    corecore