261 research outputs found

    The compressible turbulent shear layer: an experimental study

    Get PDF
    The growth rate and turbulent structure of the compressible, plane shear layer are investigated experimentally in a novel facility. In this facility, it is possible to flow similar or dissimilar gases of different densities and to select different Mach numbers for each stream. Ten combinations of gases and Mach numbers are studied in which the free-stream Mach numbers range from 0.2 to 4. Schlieren photography of 20-ns exposure time reveals very low spreading rates and large-scale structures. The growth of the turbulent region is defined by means of Pitot-pressure profiles measured at several streamwise locations. A compressibility-effect parameter is defined that correlates and unifies the experimental results. It is the Mach number in a coordinate system convecting with the velocity of the dominant waves and structures of the shear layer, called here the convective Mach number. It happens to have nearly the same value for each stream. In the current experiments, it ranges from 0 to 1.9. The correlations of the growth rate with convective Mach number fall approximately onto one curve when the growth rate is normalized by its incompressible value at the same velocity and density ratios. The normalized growth rate, which is unity for incompressible flow, decreases rapidly with increasing convective Mach number, reaching an asymptotic value of about 0.2 for supersonic convective Mach numbers

    Mixing enhancement using axial flow

    Get PDF
    A method and an apparatus for enhancing fluid mixing. The method comprises the following: (a) configuring a duct to have an effective outer wall, an effective inner wall, a cross-sectional shape, a first cross-sectional area and an exit area, the first cross-sectional area and the exit area being different in size; (b) generating a first flow at the first cross-sectional area, the first flow having a total pressure and a speed equal to or greater than a local speed of sound; and (c) generating a positive streamwise pressure gradient in a second flow in proximity of the exit area. The second flow results from the first flow. Fluid mixing is enhanced downstream from the duct exit area

    Effect of Wedge-Shaped Deflectors on Flow Fields of Dual-Stream Jets

    Get PDF
    The effect of wedge-shaped fan flow deflectors on the mean and turbulent flow-fields of dual-stream jets is investigated. Several wedge-shaped deflector concepts were used to create asymmetry in the plume of a dual-stream jet issuing from a scaled down version of the NASA Glenn ‘5BB’ bypass-ratio 8 turbofan nozzle. The deflector configurations comprised internal and external wedges with and without a pylon. Some external wedges incorporated local extensions of the fan nacelle. All the deflectors reduced radial velocity gradients, magnitudes of peak Reynolds stresses, and peak turbulent kinetic energy beneath the jet centerplane, with an increase above the jet centerplane. A correlation was obtained between the maximum radial velocity gradient and the peak turbulent kinetic energy in the dominant noise source region

    Observations of supersonic free shear layers

    Get PDF
    Visual spreading rates of turbulent shear layers with at least one stream supersonic were measured using Schlieren photography. The experiments were done at a variety of Mach number-gas combinations. The spreading rates are correlated with a compressibility-effect parameter called the convective Mach number. It is found that for supersonic values of the convective Mach number, the spreading rate is about one quarter that of an incompressible layer at the same velocity and density ratio. The results are compared with other experimental and theoretical results

    Numerical Study of Jet Plume Instability from an Overexpanded Nozzle

    Full text link
    Collection of Technical Papers - 45th AIAA Aerospace Sciences Meeting2215720-1573

    Vortex-induced disturbance field in a compressible shear layer

    Get PDF
    The disturbance field induced by a small isolated vortex in a compressible shear layer is studied using direct simulation in a convected frame. The convective Mach number, M(sub c), is varied from 0.1 to 1.25. The vorticity perturbation is rapidly sheared by the mean velocity gradient. The resulting disturbance pressure field is observed to decrease both in magnitude and extent with increasing M(sub c), becoming a narrow transverse zone for M(sub c) greater than 0.8. A similar trend is seen for the perturbation velocity magnitude and for the Reynolds shear stress. By varying the vortex size, we verified that the decrease in perturbation levels is due to the mean-flow Mach number and not the Mach number across the vortex. At high M(sub c), the vortex still communicates with the edges of the shear layer, although communication in the mean-flow direction is strongly inhibited. The growth rate of perturbation kinetic energy declines with M(sub c) primarily due to the reduction in shear stress. For M(sub c) greater than or equal to 0.6, the pressure dilatation also contributes to the decrease of growth rates. Calculation of the perturbation field induced by a vortex doublet revealed the same trends as in the single-vortex case, illustrating the insensitivity of the Mach-number effect to the specific form of initial conditions

    Supersonic Coaxial Jets: Noise Predictions and Measurements

    Get PDF
    The noise from perfectly expanded coaxial jets was measured in an anechoic chamber for different operating conditions with the same total thrust, mass flow, and exit area. The shape of the measured noise spectrum at different angles to the jet axis was found to agree with spectral shapes for single, axisymmetric jets. Based on these spectra, the sound was characterized as being generated by large turbulent structures or fine-scale turbulence. Modeling the large scale structures as instability waves, a stability analysis was conducted for the coaxial jets to identify the growing and decaying instability waves in each shear layer and predict their noise radiation pattern outside the jet. When compared to measured directivity, the analysis identified the region downstream of the outer potential core, where the two shear layers were merging, as the source of the peak radiated noise where instability waves, with their origin in the inner shear layer, reach their maximum amplitude. Numerical computations were also performed using a linearized Euler equation solver. Those results were compared to both the results from the instability wave analysis and to measured data

    The compressible turbulent shear layer: an experimental study

    Full text link

    A Design of Experiments Investigation of Offset Streams for Supersonic Jet Noise Reduction

    Get PDF
    An experimental investigation into the noise characteristics of a dual-stream jet with four airfoils inserted in the fan nozzle was conducted. The intent of the airfoils was to deflect the fan stream relative to the core stream and, therefore, impact the development of the secondary potential core and noise radiated in the peak jet-noise direction. The experiments used a full-factorial Design of Experiments (DoE) approach to identify parameters and parameter interactions impacting noise radiation at two azimuthal microphone array locations, one of which represented a sideline viewing angle. The parameters studied included airfoil angle-of-attack, airfoil azimuthal location within the fan nozzle, and airfoil axial location relative to the fan-nozzle trailing edge. Jet conditions included subsonic and supersonic fan-stream Mach numbers. Heated jets conditions were simulated with a mixture of helium and air to replicate the exhaust velocity and density of the hot jets. The introduction of the airfoils was shown to impact noise radiated at polar angles in peak-jet noise direction and to have no impact on noise radiated at small and broadside polar angles and to have no impact on broadband-shock-associated noise. The DoE analysis showed the main effects impacting noise radiation at sideline-azimuthal-viewing angles included airfoil azimuthal angle for the airfoils on the lower side of the jet near the sideline array and airfoil trailing edge distance (with airfoils located at the nozzle trailing edge produced the lowest sound pressure levels). For an array located directly beneath the jet (and on the side of the jet from which the fan stream was deflected), the main effects impacting noise radiation included airfoil angle-of-attack and airfoil azimuthal angle for the airfoils located on the observation side of the jet as well and trailing edge distance. Interaction terms between multiple configuration parameters were shown to have significant impact on the radiated noise. The models were shown to adequately describe the sound-pressure levels obtained for a configuration in the center of the design space indicating the models can be used to navigate the design space
    corecore