75 research outputs found

    Dose-Dependent Interaction of Tbx1 and Crkl and Locally Aberrant RA Signaling in a Model of del22q11 Syndrome

    Get PDF
    Summary22q11 deletion (del22q11) syndrome is characterized genetically by heterozygous deletions within chromosome 22q11 and clinically by a constellation of congenital malformations of the aortic arch, heart, thymus, and parathyroid glands described as DiGeorge syndrome (DGS). Here, we report that compound heterozygosity of mouse homologs of two 22q11 genes, CRKL and TBX1, results in a striking increase in the penetrance and expressivity of a DGS-like phenotype compared to heterozygosity at either locus. Furthermore, we show that these two genes have critical dose-dependent functions in pharyngeal segmentation, patterning of the pharyngeal apparatus along the anteroposterior axis, and local regulation of retinoic acid (RA) metabolism and signaling. We can partially rescue one salient feature of DGS in Crkl+/−;Tbx1+/− embryos by genetically reducing the amount of RA produced in the embryo. Thus, we suggest that del22q11 is a contiguous gene syndrome involving dose-sensitive interaction of CRKL and TBX1 and locally aberrant RA signaling

    Derivation of Two New Human Embryonic Stem Cell Lines from Nonviable Human Embryos

    Get PDF
    We report the derivation and characterization of two new human embryonic stem cells (hESC) lines (CU1 and CU2) from embryos with an irreversible loss of integrated organismic function. In addition, we analyzed retrospective data of morphological progression from embryonic day (ED) 5 to ED6 for 2480 embryos not suitable for clinical use to assess grading criteria indicative of loss of viability on ED5. Our analysis indicated that a large proportion of in vitro fertilization (IVF) embryos not suitable for clinical use could be used for hESC derivation. Based on these combined findings, we propose that criteria commonly used in IVF clinics to determine optimal embryos for uterine transfer can be employed to predict the potential for hESC derivation from poor quality embryos without the destruction of vital human embryos

    Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo

    Get PDF
    Generation of inside cells that develop into inner cell mass (ICM) and outside cells that develop into trophectoderm is central to the development of the early mouse embryo. Critical to this decision is the development of cell polarity and the associated asymmetric (differentiative) divisions of the 8-cell-stage blastomeres. The underlying molecular mechanisms for these events are not understood. As the Par3/aPKC complex has a role in establishing cellular polarity and division orientation in other systems, we explored its potential function in the developing mouse embryo. We show that both Par3 and aPKC adopt a polarized localization from the 8-cell stage onwards and that manipulating their function re-directs cell positioning and consequently influences cell fate. Injection of dsRNA against Par3 or mRNA for a dominant negative form of aPKC into a random blastomere at the 4-cell stage directs progeny of the injected cell into the inside part of the embryo. This appears to result from both an increased frequency by which such cells undertake differentiative divisions and their decreased probability of retaining outside positions. Thus, the natural spatial allocation of blastomere progeny can be over-ridden by downregulation of Par3 or aPKC, leading to a deceased tendency for them to remain outside and so develop into trophectoderm. In addition, this experimental approach illustrates a powerful means of manipulating gene expression in a specific clonal population of cells in the preimplantation embryo

    Tbx6 Regulates Left/Right Patterning in Mouse Embryos through Effects on Nodal Cilia and Perinodal Signaling

    Get PDF
    Background: The determination of left/right body axis during early embryogenesis sets up a developmental cascade that coordinates the development of the viscera and is essential to the correct placement and alignment of organ systems and vasculature. Defective left-right patterning can lead to congenital cardiac malformations, vascular anomalies and other serious health problems. Here we describe a novel role for the T-box transcription factor gene Tbx6 in left/right body axis determination in the mouse. Results: Embryos lacking Tbx6 show randomized embryo turning and heart looping. Our results point to multiple mechanisms for this effect. First, Dll1, a direct target of Tbx6, is down regulated around the node in Tbx6 mutants and there is a subsequent decrease in nodal signaling, which is required for laterality determination. Secondly, in spite of a lack of expression of Tbx6 in the node, we document a profound effect of the Tbx6 mutation on the morphology and motility of nodal cilia. This results in the loss of asymmetric calcium signaling at the periphery of the node, suggesting that unidirectional nodal flow is disrupted. To carry out these studies, we devised a novel method for direct labeling and live imaging cilia in vivo using a genetically-encoded fluorescent protein fusion that labels tubulin, combined with laser point scanning confocal microscopy for direct visualization of cilia movement. Conclusions: We conclude that the transcription factor gene Tbx6 is essential for correct left/right axis determination in th
    corecore