10,598 research outputs found

    N=31 is not IIB

    Get PDF
    We adapt the spinorial geometry method to investigate supergravity backgrounds with near maximal number of supersymmetries. We then apply the formalism to show that the IIB supergravity backgrounds with 31 supersymmetries preserve an additional supersymmetry and so they are maximally supersymmetric. This rules out the existence of IIB supergravity preons.Comment: 7 page

    Geometry of all supersymmetric type I backgrounds

    Get PDF
    We find the geometry of all supersymmetric type I backgrounds by solving the gravitino and dilatino Killing spinor equations, using the spinorial geometry technique, in all cases. The solutions of the gravitino Killing spinor equation are characterized by their isotropy group in Spin(9,1), while the solutions of the dilatino Killing spinor equation are characterized by their isotropy group in the subgroup Sigma(P) of Spin(9,1) which preserves the space of parallel spinors P. Given a solution of the gravitino Killing spinor equation with L parallel spinors, L = 1,2,3,4,5,6,8, the dilatino Killing spinor equation allows for solutions with N supersymmetries for any 0 < N =< L. Moreover for L = 16, we confirm that N = 8,10,12,14,16. We find that in most cases the Bianchi identities and the field equations of type I backgrounds imply a further reduction of the holonomy of the supercovariant connection. In addition, we show that in some cases if the holonomy group of the supercovariant connection is precisely the isotropy group of the parallel spinors, then all parallel spinors are Killing and so there are no backgrounds with N < L supersymmetries.Comment: 73 pages. v2: minor changes, references adde

    Multi-jet Production in Hadron Collisions

    Get PDF
    The advent of high-energy hadron colliders necessitates efficient and accurate computation of multi-jet production processes, both as QCD processes in their own right and as backgrounds for other physics. The algorithm that performs these tasks and a brief numerical study of multi-jet processes are presented.Comment: 21 pages, 9 figure

    The POOL Data Storage, Cache and Conversion Mechanism

    Full text link
    The POOL data storage mechanism is intended to satisfy the needs of the LHC experiments to store and analyze the data from the detector response of particle collisions at the LHC proton-proton collider. Both the data rate and the data volumes will largely differ from the past experience. The POOL data storage mechanism is intended to be able to cope with the experiment's requirements applying a flexible multi technology data persistency mechanism. The developed technology independent approach is flexible enough to adopt new technologies, take advantage of existing schema evolution mechanisms and allows users to access data in a technology independent way. The framework consists of several components, which can be individually adopted and integrated into existing experiment frameworks.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 5 pages, PDF, 6 figures. PSN MOKT00

    Plasma waves driven by gravitational waves in an expanding universe

    Full text link
    In a Friedmann-Robertson-Walker (FRW) cosmological model with zero spatial curvature, we consider the interaction of the gravitational waves with the plasma in the presence of a weak magnetic field. Using the relativistic hydromagnetic equations it is verified that large amplitude magnetosonic waves are excited, assuming that both, the gravitational field and the weak magnetic field do not break the homogeneity and isotropy of the considered FRW spacetime.Comment: 14 page

    The holonomy of IIB supercovariant connection

    Full text link
    We show that the holonomy of the supercovariant connection of IIB supergravity is contained in SL(32, \bR). We also find that the holonomy reduces to a subgroup of SL(32-N)\st (\oplus^N \bR^{32-N}) for IIB supergravity backgrounds with NN Killing spinors. We give the necessary and sufficient conditions for a IIB background to admit NN Killing spinors. A IIB supersymmetric probe configuration can involve up to 31 linearly independent planar branes and preserves one supersymmetry.Comment: 8 pages, latex. v2: Minor correction

    Penrose Limits and Spacetime Singularities

    Full text link
    We give a covariant characterisation of the Penrose plane wave limit: the plane wave profile matrix A(u)A(u) is the restriction of the null geodesic deviation matrix (curvature tensor) of the original spacetime metric to the null geodesic, evaluated in a comoving frame. We also consider the Penrose limits of spacetime singularities and show that for a large class of black hole, cosmological and null singularities (of Szekeres-Iyer ``power-law type''), including those of the FRW and Schwarzschild metrics, the result is a singular homogeneous plane wave with profile A(u)u2A(u)\sim u^{-2}, the scale invariance of the latter reflecting the power-law behaviour of the singularities.Comment: 9 pages, LaTeX2e; v2: additional references and cosmetic correction

    Spinorial geometry and Killing spinor equations of 6-D supergravity

    Full text link
    We solve the Killing spinor equations of 6-dimensional (1,0)-supergravity coupled to any number of tensor, vector and scalar multiplets in all cases. The isotropy groups of Killing spinors are Sp(1)\cdot Sp(1)\ltimes \bH (1), U(1)\cdot Sp(1)\ltimes \bH (2), Sp(1)\ltimes \bH (3,4), Sp(1)(2)Sp(1) (2), U(1)(4)U(1) (4) and {1}(8)\{1\} (8), where in parenthesis is the number of supersymmetries preserved in each case. If the isotropy group is non-compact, the spacetime admits a parallel null 1-form with respect to a connection with torsion the 3-form field strength of the gravitational multiplet. The associated vector field is Killing and the 3-form is determined in terms of the geometry of spacetime. The Sp(1)\ltimes \bH case admits a descendant solution preserving 3 out of 4 supersymmetries due to the hyperini Killing spinor equation. If the isotropy group is compact, the spacetime admits a natural frame constructed from 1-form spinor bi-linears. In the Sp(1)Sp(1) and U(1) cases, the spacetime admits 3 and 4 parallel 1-forms with respect to the connection with torsion, respectively. The associated vector fields are Killing and under some additional restrictions the spacetime is a principal bundle with fibre a Lorentzian Lie group. The conditions imposed by the Killing spinor equations on all other fields are also determined.Comment: 34 pages, Minor change

    On the Hagedorn Behaviour of Singular Scale-Invariant Plane Waves

    Full text link
    As a step towards understanding the properties of string theory in time-dependent and singular spacetimes, we study the divergence of density operators for string ensembles in singular scale-invariant plane waves, i.e. those plane waves that arise as the Penrose limits of generic power-law spacetime singularities. We show that the scale invariance implies that the Hagedorn behaviour of bosonic and supersymmetric strings in these backgrounds, even with the inclusion of RR or NS fields, is the same as that of strings in flat space. This is in marked contrast to the behaviour of strings in the BFHP plane wave which exhibit quantitatively and qualitatively different thermodynamic properties.Comment: 15 pages, LaTeX2e, v2: JHEP3.cls, one reference adde
    corecore